Global symmetric approximation of frames
- Autores
- Chiumiento, Eduardo Hernan
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We solve the problem of best approximation by Parseval frames to an arbitrary frame in a subspace of an infinite dimensional Hilbert space. We explicitly describe all the solutions and we give a criterion for uniqueness. Our proof relies on the geometric structure of the set of all Parseval frames quadratically close to a given frame. In the process we show that its connected components can be parametrized by using the notion of index of a pair of projections, and we prove existence and uniqueness results of best approximation by Parseval frames restricted to these connected components.
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
SYMMETRIC APPROXIMATION
FRAME
HILBERT SPACE
HILBERT SCHMIDT OPERATORS
INDEX OF A PAIR OF PROJECTIONS
PARTIAL ISOMETRY
LÖWDIN ORTHOGONALIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/108156
Ver los metadatos del registro completo
| id |
CONICETDig_ff58dce00f10c36b4f03c3c0b1a98fc8 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/108156 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Global symmetric approximation of framesChiumiento, Eduardo HernanSYMMETRIC APPROXIMATIONFRAMEHILBERT SPACEHILBERT SCHMIDT OPERATORSINDEX OF A PAIR OF PROJECTIONSPARTIAL ISOMETRYLÖWDIN ORTHOGONALIZATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We solve the problem of best approximation by Parseval frames to an arbitrary frame in a subspace of an infinite dimensional Hilbert space. We explicitly describe all the solutions and we give a criterion for uniqueness. Our proof relies on the geometric structure of the set of all Parseval frames quadratically close to a given frame. In the process we show that its connected components can be parametrized by using the notion of index of a pair of projections, and we prove existence and uniqueness results of best approximation by Parseval frames restricted to these connected components.Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaSpringer2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108156Chiumiento, Eduardo Hernan; Global symmetric approximation of frames; Springer; Journal Of Fourier Analysis And Applications; 25; 4; 8-2019; 1395-14231069-5869CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00041-018-9632-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-018-9632-4info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1711.08543info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:21:23Zoai:ri.conicet.gov.ar:11336/108156instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:21:24.018CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Global symmetric approximation of frames |
| title |
Global symmetric approximation of frames |
| spellingShingle |
Global symmetric approximation of frames Chiumiento, Eduardo Hernan SYMMETRIC APPROXIMATION FRAME HILBERT SPACE HILBERT SCHMIDT OPERATORS INDEX OF A PAIR OF PROJECTIONS PARTIAL ISOMETRY LÖWDIN ORTHOGONALIZATION |
| title_short |
Global symmetric approximation of frames |
| title_full |
Global symmetric approximation of frames |
| title_fullStr |
Global symmetric approximation of frames |
| title_full_unstemmed |
Global symmetric approximation of frames |
| title_sort |
Global symmetric approximation of frames |
| dc.creator.none.fl_str_mv |
Chiumiento, Eduardo Hernan |
| author |
Chiumiento, Eduardo Hernan |
| author_facet |
Chiumiento, Eduardo Hernan |
| author_role |
author |
| dc.subject.none.fl_str_mv |
SYMMETRIC APPROXIMATION FRAME HILBERT SPACE HILBERT SCHMIDT OPERATORS INDEX OF A PAIR OF PROJECTIONS PARTIAL ISOMETRY LÖWDIN ORTHOGONALIZATION |
| topic |
SYMMETRIC APPROXIMATION FRAME HILBERT SPACE HILBERT SCHMIDT OPERATORS INDEX OF A PAIR OF PROJECTIONS PARTIAL ISOMETRY LÖWDIN ORTHOGONALIZATION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We solve the problem of best approximation by Parseval frames to an arbitrary frame in a subspace of an infinite dimensional Hilbert space. We explicitly describe all the solutions and we give a criterion for uniqueness. Our proof relies on the geometric structure of the set of all Parseval frames quadratically close to a given frame. In the process we show that its connected components can be parametrized by using the notion of index of a pair of projections, and we prove existence and uniqueness results of best approximation by Parseval frames restricted to these connected components. Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
We solve the problem of best approximation by Parseval frames to an arbitrary frame in a subspace of an infinite dimensional Hilbert space. We explicitly describe all the solutions and we give a criterion for uniqueness. Our proof relies on the geometric structure of the set of all Parseval frames quadratically close to a given frame. In the process we show that its connected components can be parametrized by using the notion of index of a pair of projections, and we prove existence and uniqueness results of best approximation by Parseval frames restricted to these connected components. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/108156 Chiumiento, Eduardo Hernan; Global symmetric approximation of frames; Springer; Journal Of Fourier Analysis And Applications; 25; 4; 8-2019; 1395-1423 1069-5869 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/108156 |
| identifier_str_mv |
Chiumiento, Eduardo Hernan; Global symmetric approximation of frames; Springer; Journal Of Fourier Analysis And Applications; 25; 4; 8-2019; 1395-1423 1069-5869 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00041-018-9632-4 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-018-9632-4 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1711.08543 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847426154830495744 |
| score |
13.10058 |