Global symmetric approximation of frames
- Autores
- Chiumiento, Eduardo Hernan
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We solve the problem of best approximation by Parseval frames to an arbitrary frame in a subspace of an infinite dimensional Hilbert space. We explicitly describe all the solutions and we give a criterion for uniqueness. Our proof relies on the geometric structure of the set of all Parseval frames quadratically close to a given frame. In the process we show that its connected components can be parametrized by using the notion of index of a pair of projections, and we prove existence and uniqueness results of best approximation by Parseval frames restricted to these connected components.
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
SYMMETRIC APPROXIMATION
FRAME
HILBERT SPACE
HILBERT SCHMIDT OPERATORS
INDEX OF A PAIR OF PROJECTIONS
PARTIAL ISOMETRY
LÖWDIN ORTHOGONALIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/108156
Ver los metadatos del registro completo
id |
CONICETDig_ff58dce00f10c36b4f03c3c0b1a98fc8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/108156 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Global symmetric approximation of framesChiumiento, Eduardo HernanSYMMETRIC APPROXIMATIONFRAMEHILBERT SPACEHILBERT SCHMIDT OPERATORSINDEX OF A PAIR OF PROJECTIONSPARTIAL ISOMETRYLÖWDIN ORTHOGONALIZATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We solve the problem of best approximation by Parseval frames to an arbitrary frame in a subspace of an infinite dimensional Hilbert space. We explicitly describe all the solutions and we give a criterion for uniqueness. Our proof relies on the geometric structure of the set of all Parseval frames quadratically close to a given frame. In the process we show that its connected components can be parametrized by using the notion of index of a pair of projections, and we prove existence and uniqueness results of best approximation by Parseval frames restricted to these connected components.Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaSpringer2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108156Chiumiento, Eduardo Hernan; Global symmetric approximation of frames; Springer; Journal Of Fourier Analysis And Applications; 25; 4; 8-2019; 1395-14231069-5869CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00041-018-9632-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-018-9632-4info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1711.08543info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:21Zoai:ri.conicet.gov.ar:11336/108156instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:21.6CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Global symmetric approximation of frames |
title |
Global symmetric approximation of frames |
spellingShingle |
Global symmetric approximation of frames Chiumiento, Eduardo Hernan SYMMETRIC APPROXIMATION FRAME HILBERT SPACE HILBERT SCHMIDT OPERATORS INDEX OF A PAIR OF PROJECTIONS PARTIAL ISOMETRY LÖWDIN ORTHOGONALIZATION |
title_short |
Global symmetric approximation of frames |
title_full |
Global symmetric approximation of frames |
title_fullStr |
Global symmetric approximation of frames |
title_full_unstemmed |
Global symmetric approximation of frames |
title_sort |
Global symmetric approximation of frames |
dc.creator.none.fl_str_mv |
Chiumiento, Eduardo Hernan |
author |
Chiumiento, Eduardo Hernan |
author_facet |
Chiumiento, Eduardo Hernan |
author_role |
author |
dc.subject.none.fl_str_mv |
SYMMETRIC APPROXIMATION FRAME HILBERT SPACE HILBERT SCHMIDT OPERATORS INDEX OF A PAIR OF PROJECTIONS PARTIAL ISOMETRY LÖWDIN ORTHOGONALIZATION |
topic |
SYMMETRIC APPROXIMATION FRAME HILBERT SPACE HILBERT SCHMIDT OPERATORS INDEX OF A PAIR OF PROJECTIONS PARTIAL ISOMETRY LÖWDIN ORTHOGONALIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We solve the problem of best approximation by Parseval frames to an arbitrary frame in a subspace of an infinite dimensional Hilbert space. We explicitly describe all the solutions and we give a criterion for uniqueness. Our proof relies on the geometric structure of the set of all Parseval frames quadratically close to a given frame. In the process we show that its connected components can be parametrized by using the notion of index of a pair of projections, and we prove existence and uniqueness results of best approximation by Parseval frames restricted to these connected components. Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
We solve the problem of best approximation by Parseval frames to an arbitrary frame in a subspace of an infinite dimensional Hilbert space. We explicitly describe all the solutions and we give a criterion for uniqueness. Our proof relies on the geometric structure of the set of all Parseval frames quadratically close to a given frame. In the process we show that its connected components can be parametrized by using the notion of index of a pair of projections, and we prove existence and uniqueness results of best approximation by Parseval frames restricted to these connected components. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/108156 Chiumiento, Eduardo Hernan; Global symmetric approximation of frames; Springer; Journal Of Fourier Analysis And Applications; 25; 4; 8-2019; 1395-1423 1069-5869 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/108156 |
identifier_str_mv |
Chiumiento, Eduardo Hernan; Global symmetric approximation of frames; Springer; Journal Of Fourier Analysis And Applications; 25; 4; 8-2019; 1395-1423 1069-5869 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00041-018-9632-4 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-018-9632-4 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1711.08543 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613176336842752 |
score |
13.070432 |