Wildfire detection in large-scale environments using force-based control for swarms of UAVs
- Autores
- Tzoumas, Georgios; Pitonakova, Lenka; Salinas, Lucio Rafael; Scales, Charles; Richardson, Thomas; Hauert, Sabine
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Wildfres afect countries worldwide as global warming increases the probability of their appearance. Monitoring vast areas of forests can be challenging due to the lack of resources and information. Additionally, early detection of wildfres can be benefcial for their mitigation. To this end, we explore in simulation the use of swarms of uncrewed aerial vehicles (UAVs) with long autonomy that can cover large areas the size of California to detect early stage wildfres. Four decentralised control algorithms are tested: (1) random walking, (2) dispersion, (3) pheromone avoidance and (4) dynamic space partition. The frst three adaptations are known from literature, whereas the last one is newly developed. The algorithms are tested with swarms of diferent sizes to test the spatial coverage of the system in 24 h of simulation time. Best results are achieved using a version of the dynamic space partition algorithm (DSP) which can detect 82% of the fres using only 20 UAVs. When the swarm consists of 40 or more aircraft 100% coverage can also be achieved. Further tests of DSP show robustness when agents fail and when new fres are generated in the area.
Fil: Tzoumas, Georgios. University of Bristol; Reino Unido. Bristol Robotics Laboratory; Reino Unido
Fil: Pitonakova, Lenka. University of Bristol; Reino Unido. Windracers Ltd; Reino Unido
Fil: Salinas, Lucio Rafael. University of Bristol; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Bristol Robotics Laboratory; Reino Unido
Fil: Scales, Charles. Windracers Ltd; Reino Unido
Fil: Richardson, Thomas. University of Bristol; Reino Unido. Bristol Robotics Laboratory; Reino Unido
Fil: Hauert, Sabine. University of Bristol; Reino Unido. Bristol Robotics Laboratory; Reino Unido - Materia
-
DYNAMIC SPACE PARTITION
MONITORING
PHYSICOMIMETICS
SWARMS
UAVS
WILDFIRES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/227832
Ver los metadatos del registro completo
| id |
CONICETDig_ff3c29b547dd881d59013dcd79440559 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/227832 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Wildfire detection in large-scale environments using force-based control for swarms of UAVsTzoumas, GeorgiosPitonakova, LenkaSalinas, Lucio RafaelScales, CharlesRichardson, ThomasHauert, SabineDYNAMIC SPACE PARTITIONMONITORINGPHYSICOMIMETICSSWARMSUAVSWILDFIREShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Wildfres afect countries worldwide as global warming increases the probability of their appearance. Monitoring vast areas of forests can be challenging due to the lack of resources and information. Additionally, early detection of wildfres can be benefcial for their mitigation. To this end, we explore in simulation the use of swarms of uncrewed aerial vehicles (UAVs) with long autonomy that can cover large areas the size of California to detect early stage wildfres. Four decentralised control algorithms are tested: (1) random walking, (2) dispersion, (3) pheromone avoidance and (4) dynamic space partition. The frst three adaptations are known from literature, whereas the last one is newly developed. The algorithms are tested with swarms of diferent sizes to test the spatial coverage of the system in 24 h of simulation time. Best results are achieved using a version of the dynamic space partition algorithm (DSP) which can detect 82% of the fres using only 20 UAVs. When the swarm consists of 40 or more aircraft 100% coverage can also be achieved. Further tests of DSP show robustness when agents fail and when new fres are generated in the area.Fil: Tzoumas, Georgios. University of Bristol; Reino Unido. Bristol Robotics Laboratory; Reino UnidoFil: Pitonakova, Lenka. University of Bristol; Reino Unido. Windracers Ltd; Reino UnidoFil: Salinas, Lucio Rafael. University of Bristol; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Bristol Robotics Laboratory; Reino UnidoFil: Scales, Charles. Windracers Ltd; Reino UnidoFil: Richardson, Thomas. University of Bristol; Reino Unido. Bristol Robotics Laboratory; Reino UnidoFil: Hauert, Sabine. University of Bristol; Reino Unido. Bristol Robotics Laboratory; Reino UnidoSpringer2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227832Tzoumas, Georgios; Pitonakova, Lenka; Salinas, Lucio Rafael; Scales, Charles; Richardson, Thomas; et al.; Wildfire detection in large-scale environments using force-based control for swarms of UAVs; Springer; Swarm Intelligence; 17; 1-2; 2-2023; 89-1151935-38121935-3820CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11721-022-00218-9info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11721-022-00218-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:02:01Zoai:ri.conicet.gov.ar:11336/227832instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:02:02.025CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Wildfire detection in large-scale environments using force-based control for swarms of UAVs |
| title |
Wildfire detection in large-scale environments using force-based control for swarms of UAVs |
| spellingShingle |
Wildfire detection in large-scale environments using force-based control for swarms of UAVs Tzoumas, Georgios DYNAMIC SPACE PARTITION MONITORING PHYSICOMIMETICS SWARMS UAVS WILDFIRES |
| title_short |
Wildfire detection in large-scale environments using force-based control for swarms of UAVs |
| title_full |
Wildfire detection in large-scale environments using force-based control for swarms of UAVs |
| title_fullStr |
Wildfire detection in large-scale environments using force-based control for swarms of UAVs |
| title_full_unstemmed |
Wildfire detection in large-scale environments using force-based control for swarms of UAVs |
| title_sort |
Wildfire detection in large-scale environments using force-based control for swarms of UAVs |
| dc.creator.none.fl_str_mv |
Tzoumas, Georgios Pitonakova, Lenka Salinas, Lucio Rafael Scales, Charles Richardson, Thomas Hauert, Sabine |
| author |
Tzoumas, Georgios |
| author_facet |
Tzoumas, Georgios Pitonakova, Lenka Salinas, Lucio Rafael Scales, Charles Richardson, Thomas Hauert, Sabine |
| author_role |
author |
| author2 |
Pitonakova, Lenka Salinas, Lucio Rafael Scales, Charles Richardson, Thomas Hauert, Sabine |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
DYNAMIC SPACE PARTITION MONITORING PHYSICOMIMETICS SWARMS UAVS WILDFIRES |
| topic |
DYNAMIC SPACE PARTITION MONITORING PHYSICOMIMETICS SWARMS UAVS WILDFIRES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Wildfres afect countries worldwide as global warming increases the probability of their appearance. Monitoring vast areas of forests can be challenging due to the lack of resources and information. Additionally, early detection of wildfres can be benefcial for their mitigation. To this end, we explore in simulation the use of swarms of uncrewed aerial vehicles (UAVs) with long autonomy that can cover large areas the size of California to detect early stage wildfres. Four decentralised control algorithms are tested: (1) random walking, (2) dispersion, (3) pheromone avoidance and (4) dynamic space partition. The frst three adaptations are known from literature, whereas the last one is newly developed. The algorithms are tested with swarms of diferent sizes to test the spatial coverage of the system in 24 h of simulation time. Best results are achieved using a version of the dynamic space partition algorithm (DSP) which can detect 82% of the fres using only 20 UAVs. When the swarm consists of 40 or more aircraft 100% coverage can also be achieved. Further tests of DSP show robustness when agents fail and when new fres are generated in the area. Fil: Tzoumas, Georgios. University of Bristol; Reino Unido. Bristol Robotics Laboratory; Reino Unido Fil: Pitonakova, Lenka. University of Bristol; Reino Unido. Windracers Ltd; Reino Unido Fil: Salinas, Lucio Rafael. University of Bristol; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Bristol Robotics Laboratory; Reino Unido Fil: Scales, Charles. Windracers Ltd; Reino Unido Fil: Richardson, Thomas. University of Bristol; Reino Unido. Bristol Robotics Laboratory; Reino Unido Fil: Hauert, Sabine. University of Bristol; Reino Unido. Bristol Robotics Laboratory; Reino Unido |
| description |
Wildfres afect countries worldwide as global warming increases the probability of their appearance. Monitoring vast areas of forests can be challenging due to the lack of resources and information. Additionally, early detection of wildfres can be benefcial for their mitigation. To this end, we explore in simulation the use of swarms of uncrewed aerial vehicles (UAVs) with long autonomy that can cover large areas the size of California to detect early stage wildfres. Four decentralised control algorithms are tested: (1) random walking, (2) dispersion, (3) pheromone avoidance and (4) dynamic space partition. The frst three adaptations are known from literature, whereas the last one is newly developed. The algorithms are tested with swarms of diferent sizes to test the spatial coverage of the system in 24 h of simulation time. Best results are achieved using a version of the dynamic space partition algorithm (DSP) which can detect 82% of the fres using only 20 UAVs. When the swarm consists of 40 or more aircraft 100% coverage can also be achieved. Further tests of DSP show robustness when agents fail and when new fres are generated in the area. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/227832 Tzoumas, Georgios; Pitonakova, Lenka; Salinas, Lucio Rafael; Scales, Charles; Richardson, Thomas; et al.; Wildfire detection in large-scale environments using force-based control for swarms of UAVs; Springer; Swarm Intelligence; 17; 1-2; 2-2023; 89-115 1935-3812 1935-3820 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/227832 |
| identifier_str_mv |
Tzoumas, Georgios; Pitonakova, Lenka; Salinas, Lucio Rafael; Scales, Charles; Richardson, Thomas; et al.; Wildfire detection in large-scale environments using force-based control for swarms of UAVs; Springer; Swarm Intelligence; 17; 1-2; 2-2023; 89-115 1935-3812 1935-3820 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11721-022-00218-9 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11721-022-00218-9 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781218679422976 |
| score |
12.982451 |