Classical invariants and the quantization of chaotic systems

Autores
Wisniacki, Diego Ariel; Vergini, Eduardo Germán; Benito, R.M.; Borondo, F.
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Due to their exponential proliferation, long periodic orbits constitute a serious drawback in Gutzwiller’s theory of chaotic systems. Therefore, it would be desirable that other classical invariants, not suffering from the same problem, could be used in alternative semiclassical quantization schemes. In this Rapid Communication, we demonstrate how a suitable dynamical analysis of chaotic quantum spectra unveils the role played, in this respect, by classical invariant areas related to the stable and unstable manifolds of short periodic orbits. © 2004 The American Physical Society.
Fil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Vergini, Eduardo Germán. Comisión Nacional de Energía Atómica; Argentina. Universidad Autónoma de Madrid; España
Fil: Benito, R.M.. Escuela Tecnica Superior de Ingenieros Agronomos de Madrid;
Fil: Borondo, F.. Universidad Autónoma de Madrid; España
Materia
SEMICLASSICAL MECHANICS
QUANTUM CHAOS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/75111

id CONICETDig_feebbc1f75f837fe2f545f29d1c25829
oai_identifier_str oai:ri.conicet.gov.ar:11336/75111
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Classical invariants and the quantization of chaotic systemsWisniacki, Diego ArielVergini, Eduardo GermánBenito, R.M.Borondo, F.SEMICLASSICAL MECHANICSQUANTUM CHAOShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Due to their exponential proliferation, long periodic orbits constitute a serious drawback in Gutzwiller’s theory of chaotic systems. Therefore, it would be desirable that other classical invariants, not suffering from the same problem, could be used in alternative semiclassical quantization schemes. In this Rapid Communication, we demonstrate how a suitable dynamical analysis of chaotic quantum spectra unveils the role played, in this respect, by classical invariant areas related to the stable and unstable manifolds of short periodic orbits. © 2004 The American Physical Society.Fil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Vergini, Eduardo Germán. Comisión Nacional de Energía Atómica; Argentina. Universidad Autónoma de Madrid; EspañaFil: Benito, R.M.. Escuela Tecnica Superior de Ingenieros Agronomos de Madrid;Fil: Borondo, F.. Universidad Autónoma de Madrid; EspañaAmerican Physical Society2004-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75111Wisniacki, Diego Ariel; Vergini, Eduardo Germán; Benito, R.M.; Borondo, F.; Classical invariants and the quantization of chaotic systems; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 70; 3; 9-2004; 352021-3520241063-651XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.70.035202info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:43Zoai:ri.conicet.gov.ar:11336/75111instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:44.058CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Classical invariants and the quantization of chaotic systems
title Classical invariants and the quantization of chaotic systems
spellingShingle Classical invariants and the quantization of chaotic systems
Wisniacki, Diego Ariel
SEMICLASSICAL MECHANICS
QUANTUM CHAOS
title_short Classical invariants and the quantization of chaotic systems
title_full Classical invariants and the quantization of chaotic systems
title_fullStr Classical invariants and the quantization of chaotic systems
title_full_unstemmed Classical invariants and the quantization of chaotic systems
title_sort Classical invariants and the quantization of chaotic systems
dc.creator.none.fl_str_mv Wisniacki, Diego Ariel
Vergini, Eduardo Germán
Benito, R.M.
Borondo, F.
author Wisniacki, Diego Ariel
author_facet Wisniacki, Diego Ariel
Vergini, Eduardo Germán
Benito, R.M.
Borondo, F.
author_role author
author2 Vergini, Eduardo Germán
Benito, R.M.
Borondo, F.
author2_role author
author
author
dc.subject.none.fl_str_mv SEMICLASSICAL MECHANICS
QUANTUM CHAOS
topic SEMICLASSICAL MECHANICS
QUANTUM CHAOS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Due to their exponential proliferation, long periodic orbits constitute a serious drawback in Gutzwiller’s theory of chaotic systems. Therefore, it would be desirable that other classical invariants, not suffering from the same problem, could be used in alternative semiclassical quantization schemes. In this Rapid Communication, we demonstrate how a suitable dynamical analysis of chaotic quantum spectra unveils the role played, in this respect, by classical invariant areas related to the stable and unstable manifolds of short periodic orbits. © 2004 The American Physical Society.
Fil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Vergini, Eduardo Germán. Comisión Nacional de Energía Atómica; Argentina. Universidad Autónoma de Madrid; España
Fil: Benito, R.M.. Escuela Tecnica Superior de Ingenieros Agronomos de Madrid;
Fil: Borondo, F.. Universidad Autónoma de Madrid; España
description Due to their exponential proliferation, long periodic orbits constitute a serious drawback in Gutzwiller’s theory of chaotic systems. Therefore, it would be desirable that other classical invariants, not suffering from the same problem, could be used in alternative semiclassical quantization schemes. In this Rapid Communication, we demonstrate how a suitable dynamical analysis of chaotic quantum spectra unveils the role played, in this respect, by classical invariant areas related to the stable and unstable manifolds of short periodic orbits. © 2004 The American Physical Society.
publishDate 2004
dc.date.none.fl_str_mv 2004-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/75111
Wisniacki, Diego Ariel; Vergini, Eduardo Germán; Benito, R.M.; Borondo, F.; Classical invariants and the quantization of chaotic systems; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 70; 3; 9-2004; 352021-352024
1063-651X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/75111
identifier_str_mv Wisniacki, Diego Ariel; Vergini, Eduardo Germán; Benito, R.M.; Borondo, F.; Classical invariants and the quantization of chaotic systems; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 70; 3; 9-2004; 352021-352024
1063-651X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.70.035202
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269113648414720
score 13.13397