New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries

Autores
Tuo, Kaiyong; Sun, Chunwen; Lopez, Carlos Alberto; Fernández Díaz, María Teresa; Alonso, José Antonio
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Rechargeable all-solid-state batteries (ASSBs) are considered as promising candidates for next-generation energy storage due to their high energy density and excellent safety performance. However, the low ionic conductivity of the solid-state electrolytes (SSEs) and interfacial issues are still challenging. Herein, we report a series of new mixed-metal halide superionic conductors Li3−xY1−xHfxCl6 (0 ≤ x < 1) with high ionic conductivity up to 1.49 mS cm−1 at room temperature. Using various experimental characterization techniques and bond-valence energy landscape (BVEL) calculations, we gain insights into the aliovalent substitution of Hf for Y in halide Li3YCl6 that influences the local structural environment and the underlying lithium-ion transport. Importantly, it is found that the existence of prevalent cation site disorder and defect structure as well as the synthetically optimized (Y/Hf)Cl6 framework with a more covalent feature in Hf4+-substituted Li3YCl6 strongly benefits the transport properties. In particular, the formation of an infinitely 3D connected Li+ ion diffusion pathway consisting of face-sharing octahedra within the lattice of Hf4+-substituted Li3YCl6 is revealed by structural elucidation and theoretical calculations. Additionally, owing to the exceptional interfacial stability of the as-milled SSEs against high-voltage cathode materials, all-solid-state lithium-ion batteries with a LiCoO2 cathode and Li–In anode exhibit outstanding electrochemical performance.
Fil: Tuo, Kaiyong. School Of Chemical & Environmental Engineering; China
Fil: Sun, Chunwen. School Of Chemical & Environmental Engineering; China
Fil: Lopez, Carlos Alberto. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Área Química General e Inorgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina
Fil: Fernández Díaz, María Teresa. Institut Laue Langevin; Francia
Fil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; España
Materia
halide electrolytes
aliovalent substitution
ionic conductivity
mechanochemical milling
all-solid-state batteries
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/231467

id CONICETDig_fed88e712fb7e376f22fef4c7401f2ab
oai_identifier_str oai:ri.conicet.gov.ar:11336/231467
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteriesTuo, KaiyongSun, ChunwenLopez, Carlos AlbertoFernández Díaz, María TeresaAlonso, José Antoniohalide electrolytesaliovalent substitutionionic conductivitymechanochemical millingall-solid-state batterieshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Rechargeable all-solid-state batteries (ASSBs) are considered as promising candidates for next-generation energy storage due to their high energy density and excellent safety performance. However, the low ionic conductivity of the solid-state electrolytes (SSEs) and interfacial issues are still challenging. Herein, we report a series of new mixed-metal halide superionic conductors Li3−xY1−xHfxCl6 (0 ≤ x < 1) with high ionic conductivity up to 1.49 mS cm−1 at room temperature. Using various experimental characterization techniques and bond-valence energy landscape (BVEL) calculations, we gain insights into the aliovalent substitution of Hf for Y in halide Li3YCl6 that influences the local structural environment and the underlying lithium-ion transport. Importantly, it is found that the existence of prevalent cation site disorder and defect structure as well as the synthetically optimized (Y/Hf)Cl6 framework with a more covalent feature in Hf4+-substituted Li3YCl6 strongly benefits the transport properties. In particular, the formation of an infinitely 3D connected Li+ ion diffusion pathway consisting of face-sharing octahedra within the lattice of Hf4+-substituted Li3YCl6 is revealed by structural elucidation and theoretical calculations. Additionally, owing to the exceptional interfacial stability of the as-milled SSEs against high-voltage cathode materials, all-solid-state lithium-ion batteries with a LiCoO2 cathode and Li–In anode exhibit outstanding electrochemical performance.Fil: Tuo, Kaiyong. School Of Chemical & Environmental Engineering; ChinaFil: Sun, Chunwen. School Of Chemical & Environmental Engineering; ChinaFil: Lopez, Carlos Alberto. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Área Química General e Inorgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Fernández Díaz, María Teresa. Institut Laue Langevin; FranciaFil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; EspañaRoyal Society of Chemistry2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231467Tuo, Kaiyong; Sun, Chunwen; Lopez, Carlos Alberto; Fernández Díaz, María Teresa ; Alonso, José Antonio; New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries; Royal Society of Chemistry; Journal of Materials Chemistry A; 11; 29; 7-2023; 15651-156622050-7496CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/d3ta02781cinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:35Zoai:ri.conicet.gov.ar:11336/231467instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:35.507CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries
title New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries
spellingShingle New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries
Tuo, Kaiyong
halide electrolytes
aliovalent substitution
ionic conductivity
mechanochemical milling
all-solid-state batteries
title_short New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries
title_full New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries
title_fullStr New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries
title_full_unstemmed New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries
title_sort New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries
dc.creator.none.fl_str_mv Tuo, Kaiyong
Sun, Chunwen
Lopez, Carlos Alberto
Fernández Díaz, María Teresa
Alonso, José Antonio
author Tuo, Kaiyong
author_facet Tuo, Kaiyong
Sun, Chunwen
Lopez, Carlos Alberto
Fernández Díaz, María Teresa
Alonso, José Antonio
author_role author
author2 Sun, Chunwen
Lopez, Carlos Alberto
Fernández Díaz, María Teresa
Alonso, José Antonio
author2_role author
author
author
author
dc.subject.none.fl_str_mv halide electrolytes
aliovalent substitution
ionic conductivity
mechanochemical milling
all-solid-state batteries
topic halide electrolytes
aliovalent substitution
ionic conductivity
mechanochemical milling
all-solid-state batteries
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Rechargeable all-solid-state batteries (ASSBs) are considered as promising candidates for next-generation energy storage due to their high energy density and excellent safety performance. However, the low ionic conductivity of the solid-state electrolytes (SSEs) and interfacial issues are still challenging. Herein, we report a series of new mixed-metal halide superionic conductors Li3−xY1−xHfxCl6 (0 ≤ x < 1) with high ionic conductivity up to 1.49 mS cm−1 at room temperature. Using various experimental characterization techniques and bond-valence energy landscape (BVEL) calculations, we gain insights into the aliovalent substitution of Hf for Y in halide Li3YCl6 that influences the local structural environment and the underlying lithium-ion transport. Importantly, it is found that the existence of prevalent cation site disorder and defect structure as well as the synthetically optimized (Y/Hf)Cl6 framework with a more covalent feature in Hf4+-substituted Li3YCl6 strongly benefits the transport properties. In particular, the formation of an infinitely 3D connected Li+ ion diffusion pathway consisting of face-sharing octahedra within the lattice of Hf4+-substituted Li3YCl6 is revealed by structural elucidation and theoretical calculations. Additionally, owing to the exceptional interfacial stability of the as-milled SSEs against high-voltage cathode materials, all-solid-state lithium-ion batteries with a LiCoO2 cathode and Li–In anode exhibit outstanding electrochemical performance.
Fil: Tuo, Kaiyong. School Of Chemical & Environmental Engineering; China
Fil: Sun, Chunwen. School Of Chemical & Environmental Engineering; China
Fil: Lopez, Carlos Alberto. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Área Química General e Inorgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina
Fil: Fernández Díaz, María Teresa. Institut Laue Langevin; Francia
Fil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; España
description Rechargeable all-solid-state batteries (ASSBs) are considered as promising candidates for next-generation energy storage due to their high energy density and excellent safety performance. However, the low ionic conductivity of the solid-state electrolytes (SSEs) and interfacial issues are still challenging. Herein, we report a series of new mixed-metal halide superionic conductors Li3−xY1−xHfxCl6 (0 ≤ x < 1) with high ionic conductivity up to 1.49 mS cm−1 at room temperature. Using various experimental characterization techniques and bond-valence energy landscape (BVEL) calculations, we gain insights into the aliovalent substitution of Hf for Y in halide Li3YCl6 that influences the local structural environment and the underlying lithium-ion transport. Importantly, it is found that the existence of prevalent cation site disorder and defect structure as well as the synthetically optimized (Y/Hf)Cl6 framework with a more covalent feature in Hf4+-substituted Li3YCl6 strongly benefits the transport properties. In particular, the formation of an infinitely 3D connected Li+ ion diffusion pathway consisting of face-sharing octahedra within the lattice of Hf4+-substituted Li3YCl6 is revealed by structural elucidation and theoretical calculations. Additionally, owing to the exceptional interfacial stability of the as-milled SSEs against high-voltage cathode materials, all-solid-state lithium-ion batteries with a LiCoO2 cathode and Li–In anode exhibit outstanding electrochemical performance.
publishDate 2023
dc.date.none.fl_str_mv 2023-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/231467
Tuo, Kaiyong; Sun, Chunwen; Lopez, Carlos Alberto; Fernández Díaz, María Teresa ; Alonso, José Antonio; New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries; Royal Society of Chemistry; Journal of Materials Chemistry A; 11; 29; 7-2023; 15651-15662
2050-7496
CONICET Digital
CONICET
url http://hdl.handle.net/11336/231467
identifier_str_mv Tuo, Kaiyong; Sun, Chunwen; Lopez, Carlos Alberto; Fernández Díaz, María Teresa ; Alonso, José Antonio; New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries; Royal Society of Chemistry; Journal of Materials Chemistry A; 11; 29; 7-2023; 15651-15662
2050-7496
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/d3ta02781c
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844612994847211520
score 13.070432