New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries
- Autores
- Tuo, Kaiyong; Sun, Chunwen; Lopez, Carlos Alberto; Fernández Díaz, María Teresa; Alonso, José Antonio
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Rechargeable all-solid-state batteries (ASSBs) are considered as promising candidates for next-generation energy storage due to their high energy density and excellent safety performance. However, the low ionic conductivity of the solid-state electrolytes (SSEs) and interfacial issues are still challenging. Herein, we report a series of new mixed-metal halide superionic conductors Li3−xY1−xHfxCl6 (0 ≤ x < 1) with high ionic conductivity up to 1.49 mS cm−1 at room temperature. Using various experimental characterization techniques and bond-valence energy landscape (BVEL) calculations, we gain insights into the aliovalent substitution of Hf for Y in halide Li3YCl6 that influences the local structural environment and the underlying lithium-ion transport. Importantly, it is found that the existence of prevalent cation site disorder and defect structure as well as the synthetically optimized (Y/Hf)Cl6 framework with a more covalent feature in Hf4+-substituted Li3YCl6 strongly benefits the transport properties. In particular, the formation of an infinitely 3D connected Li+ ion diffusion pathway consisting of face-sharing octahedra within the lattice of Hf4+-substituted Li3YCl6 is revealed by structural elucidation and theoretical calculations. Additionally, owing to the exceptional interfacial stability of the as-milled SSEs against high-voltage cathode materials, all-solid-state lithium-ion batteries with a LiCoO2 cathode and Li–In anode exhibit outstanding electrochemical performance.
Fil: Tuo, Kaiyong. School Of Chemical & Environmental Engineering; China
Fil: Sun, Chunwen. School Of Chemical & Environmental Engineering; China
Fil: Lopez, Carlos Alberto. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Área Química General e Inorgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina
Fil: Fernández Díaz, María Teresa. Institut Laue Langevin; Francia
Fil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; España - Materia
-
halide electrolytes
aliovalent substitution
ionic conductivity
mechanochemical milling
all-solid-state batteries - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/231467
Ver los metadatos del registro completo
id |
CONICETDig_fed88e712fb7e376f22fef4c7401f2ab |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/231467 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteriesTuo, KaiyongSun, ChunwenLopez, Carlos AlbertoFernández Díaz, María TeresaAlonso, José Antoniohalide electrolytesaliovalent substitutionionic conductivitymechanochemical millingall-solid-state batterieshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Rechargeable all-solid-state batteries (ASSBs) are considered as promising candidates for next-generation energy storage due to their high energy density and excellent safety performance. However, the low ionic conductivity of the solid-state electrolytes (SSEs) and interfacial issues are still challenging. Herein, we report a series of new mixed-metal halide superionic conductors Li3−xY1−xHfxCl6 (0 ≤ x < 1) with high ionic conductivity up to 1.49 mS cm−1 at room temperature. Using various experimental characterization techniques and bond-valence energy landscape (BVEL) calculations, we gain insights into the aliovalent substitution of Hf for Y in halide Li3YCl6 that influences the local structural environment and the underlying lithium-ion transport. Importantly, it is found that the existence of prevalent cation site disorder and defect structure as well as the synthetically optimized (Y/Hf)Cl6 framework with a more covalent feature in Hf4+-substituted Li3YCl6 strongly benefits the transport properties. In particular, the formation of an infinitely 3D connected Li+ ion diffusion pathway consisting of face-sharing octahedra within the lattice of Hf4+-substituted Li3YCl6 is revealed by structural elucidation and theoretical calculations. Additionally, owing to the exceptional interfacial stability of the as-milled SSEs against high-voltage cathode materials, all-solid-state lithium-ion batteries with a LiCoO2 cathode and Li–In anode exhibit outstanding electrochemical performance.Fil: Tuo, Kaiyong. School Of Chemical & Environmental Engineering; ChinaFil: Sun, Chunwen. School Of Chemical & Environmental Engineering; ChinaFil: Lopez, Carlos Alberto. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Área Química General e Inorgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Fernández Díaz, María Teresa. Institut Laue Langevin; FranciaFil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; EspañaRoyal Society of Chemistry2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231467Tuo, Kaiyong; Sun, Chunwen; Lopez, Carlos Alberto; Fernández Díaz, María Teresa ; Alonso, José Antonio; New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries; Royal Society of Chemistry; Journal of Materials Chemistry A; 11; 29; 7-2023; 15651-156622050-7496CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/d3ta02781cinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:35Zoai:ri.conicet.gov.ar:11336/231467instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:35.507CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries |
title |
New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries |
spellingShingle |
New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries Tuo, Kaiyong halide electrolytes aliovalent substitution ionic conductivity mechanochemical milling all-solid-state batteries |
title_short |
New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries |
title_full |
New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries |
title_fullStr |
New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries |
title_full_unstemmed |
New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries |
title_sort |
New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries |
dc.creator.none.fl_str_mv |
Tuo, Kaiyong Sun, Chunwen Lopez, Carlos Alberto Fernández Díaz, María Teresa Alonso, José Antonio |
author |
Tuo, Kaiyong |
author_facet |
Tuo, Kaiyong Sun, Chunwen Lopez, Carlos Alberto Fernández Díaz, María Teresa Alonso, José Antonio |
author_role |
author |
author2 |
Sun, Chunwen Lopez, Carlos Alberto Fernández Díaz, María Teresa Alonso, José Antonio |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
halide electrolytes aliovalent substitution ionic conductivity mechanochemical milling all-solid-state batteries |
topic |
halide electrolytes aliovalent substitution ionic conductivity mechanochemical milling all-solid-state batteries |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Rechargeable all-solid-state batteries (ASSBs) are considered as promising candidates for next-generation energy storage due to their high energy density and excellent safety performance. However, the low ionic conductivity of the solid-state electrolytes (SSEs) and interfacial issues are still challenging. Herein, we report a series of new mixed-metal halide superionic conductors Li3−xY1−xHfxCl6 (0 ≤ x < 1) with high ionic conductivity up to 1.49 mS cm−1 at room temperature. Using various experimental characterization techniques and bond-valence energy landscape (BVEL) calculations, we gain insights into the aliovalent substitution of Hf for Y in halide Li3YCl6 that influences the local structural environment and the underlying lithium-ion transport. Importantly, it is found that the existence of prevalent cation site disorder and defect structure as well as the synthetically optimized (Y/Hf)Cl6 framework with a more covalent feature in Hf4+-substituted Li3YCl6 strongly benefits the transport properties. In particular, the formation of an infinitely 3D connected Li+ ion diffusion pathway consisting of face-sharing octahedra within the lattice of Hf4+-substituted Li3YCl6 is revealed by structural elucidation and theoretical calculations. Additionally, owing to the exceptional interfacial stability of the as-milled SSEs against high-voltage cathode materials, all-solid-state lithium-ion batteries with a LiCoO2 cathode and Li–In anode exhibit outstanding electrochemical performance. Fil: Tuo, Kaiyong. School Of Chemical & Environmental Engineering; China Fil: Sun, Chunwen. School Of Chemical & Environmental Engineering; China Fil: Lopez, Carlos Alberto. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Área Química General e Inorgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina Fil: Fernández Díaz, María Teresa. Institut Laue Langevin; Francia Fil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; España |
description |
Rechargeable all-solid-state batteries (ASSBs) are considered as promising candidates for next-generation energy storage due to their high energy density and excellent safety performance. However, the low ionic conductivity of the solid-state electrolytes (SSEs) and interfacial issues are still challenging. Herein, we report a series of new mixed-metal halide superionic conductors Li3−xY1−xHfxCl6 (0 ≤ x < 1) with high ionic conductivity up to 1.49 mS cm−1 at room temperature. Using various experimental characterization techniques and bond-valence energy landscape (BVEL) calculations, we gain insights into the aliovalent substitution of Hf for Y in halide Li3YCl6 that influences the local structural environment and the underlying lithium-ion transport. Importantly, it is found that the existence of prevalent cation site disorder and defect structure as well as the synthetically optimized (Y/Hf)Cl6 framework with a more covalent feature in Hf4+-substituted Li3YCl6 strongly benefits the transport properties. In particular, the formation of an infinitely 3D connected Li+ ion diffusion pathway consisting of face-sharing octahedra within the lattice of Hf4+-substituted Li3YCl6 is revealed by structural elucidation and theoretical calculations. Additionally, owing to the exceptional interfacial stability of the as-milled SSEs against high-voltage cathode materials, all-solid-state lithium-ion batteries with a LiCoO2 cathode and Li–In anode exhibit outstanding electrochemical performance. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/231467 Tuo, Kaiyong; Sun, Chunwen; Lopez, Carlos Alberto; Fernández Díaz, María Teresa ; Alonso, José Antonio; New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries; Royal Society of Chemistry; Journal of Materials Chemistry A; 11; 29; 7-2023; 15651-15662 2050-7496 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/231467 |
identifier_str_mv |
Tuo, Kaiyong; Sun, Chunwen; Lopez, Carlos Alberto; Fernández Díaz, María Teresa ; Alonso, José Antonio; New superionic halide solid electrolytes enabled by aliovalent substitution in Li3−xY1−xHfxCl6 for all-solid-state lithium metal based batteries; Royal Society of Chemistry; Journal of Materials Chemistry A; 11; 29; 7-2023; 15651-15662 2050-7496 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/d3ta02781c |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844612994847211520 |
score |
13.070432 |