Finite-size correlation behavior near a critical point: a simple metric for monitoring the state of a neural network
- Autores
- Aguilar Trejo, Eyisto José; Mártin, Daniel Alejandro; Grigera, Tomas Sebastian; Cannas, Sergio Alejandro; Chialvo, Dante Renato
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this note, a correlation metric κc is proposed which is based on the universal behavior of the linear/logarithmic growth of the correlation length near/far the critical point of a continuous phase transition. The problem is studied on a previously described neuronal network model for which is known the scaling of the correlation length with the size of the observation region. It is verified that the κc metric is maximized for the conditions at which a power law distribution of neuronal avalanches sizes is observed, thus characterizing well the critical state of the network. Potential applications and limitations for its use with currently available optical imaging techniques are discussed.
Fil: Aguilar Trejo, Eyisto José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; Argentina
Fil: Mártin, Daniel Alejandro. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Grigera, Tomas Sebastian. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentina. Consiglio Nazionale delle Ricerche; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Chialvo, Dante Renato. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; Argentina - Materia
-
DISORDERED SYSTEMS
NEURAL NETWORKS
COMPLEX SYSTEMS
FINITE-SIZE CORRELATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/188025
Ver los metadatos del registro completo
id |
CONICETDig_fec80b4f1217116fc087f1445da1c316 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/188025 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Finite-size correlation behavior near a critical point: a simple metric for monitoring the state of a neural networkAguilar Trejo, Eyisto JoséMártin, Daniel AlejandroGrigera, Tomas SebastianCannas, Sergio AlejandroChialvo, Dante RenatoDISORDERED SYSTEMSNEURAL NETWORKSCOMPLEX SYSTEMSFINITE-SIZE CORRELATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this note, a correlation metric κc is proposed which is based on the universal behavior of the linear/logarithmic growth of the correlation length near/far the critical point of a continuous phase transition. The problem is studied on a previously described neuronal network model for which is known the scaling of the correlation length with the size of the observation region. It is verified that the κc metric is maximized for the conditions at which a power law distribution of neuronal avalanches sizes is observed, thus characterizing well the critical state of the network. Potential applications and limitations for its use with currently available optical imaging techniques are discussed.Fil: Aguilar Trejo, Eyisto José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; ArgentinaFil: Mártin, Daniel Alejandro. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Grigera, Tomas Sebastian. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentina. Consiglio Nazionale delle Ricerche; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Chialvo, Dante Renato. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; ArgentinaAmerican Physical Society2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/188025Aguilar Trejo, Eyisto José; Mártin, Daniel Alejandro; Grigera, Tomas Sebastian; Cannas, Sergio Alejandro; Chialvo, Dante Renato; Finite-size correlation behavior near a critical point: a simple metric for monitoring the state of a neural network; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 106; 054313; 5-2022; 1-52331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://doi.org/10.48550/arxiv.2205.11341info:eu-repo/semantics/altIdentifier/doi/10.48550/ARXIV.2205.11341info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.106.054313info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:37:26Zoai:ri.conicet.gov.ar:11336/188025instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:37:27.096CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Finite-size correlation behavior near a critical point: a simple metric for monitoring the state of a neural network |
title |
Finite-size correlation behavior near a critical point: a simple metric for monitoring the state of a neural network |
spellingShingle |
Finite-size correlation behavior near a critical point: a simple metric for monitoring the state of a neural network Aguilar Trejo, Eyisto José DISORDERED SYSTEMS NEURAL NETWORKS COMPLEX SYSTEMS FINITE-SIZE CORRELATION |
title_short |
Finite-size correlation behavior near a critical point: a simple metric for monitoring the state of a neural network |
title_full |
Finite-size correlation behavior near a critical point: a simple metric for monitoring the state of a neural network |
title_fullStr |
Finite-size correlation behavior near a critical point: a simple metric for monitoring the state of a neural network |
title_full_unstemmed |
Finite-size correlation behavior near a critical point: a simple metric for monitoring the state of a neural network |
title_sort |
Finite-size correlation behavior near a critical point: a simple metric for monitoring the state of a neural network |
dc.creator.none.fl_str_mv |
Aguilar Trejo, Eyisto José Mártin, Daniel Alejandro Grigera, Tomas Sebastian Cannas, Sergio Alejandro Chialvo, Dante Renato |
author |
Aguilar Trejo, Eyisto José |
author_facet |
Aguilar Trejo, Eyisto José Mártin, Daniel Alejandro Grigera, Tomas Sebastian Cannas, Sergio Alejandro Chialvo, Dante Renato |
author_role |
author |
author2 |
Mártin, Daniel Alejandro Grigera, Tomas Sebastian Cannas, Sergio Alejandro Chialvo, Dante Renato |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
DISORDERED SYSTEMS NEURAL NETWORKS COMPLEX SYSTEMS FINITE-SIZE CORRELATION |
topic |
DISORDERED SYSTEMS NEURAL NETWORKS COMPLEX SYSTEMS FINITE-SIZE CORRELATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this note, a correlation metric κc is proposed which is based on the universal behavior of the linear/logarithmic growth of the correlation length near/far the critical point of a continuous phase transition. The problem is studied on a previously described neuronal network model for which is known the scaling of the correlation length with the size of the observation region. It is verified that the κc metric is maximized for the conditions at which a power law distribution of neuronal avalanches sizes is observed, thus characterizing well the critical state of the network. Potential applications and limitations for its use with currently available optical imaging techniques are discussed. Fil: Aguilar Trejo, Eyisto José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; Argentina Fil: Mártin, Daniel Alejandro. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Grigera, Tomas Sebastian. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentina. Consiglio Nazionale delle Ricerche; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina Fil: Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Chialvo, Dante Renato. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; Argentina |
description |
In this note, a correlation metric κc is proposed which is based on the universal behavior of the linear/logarithmic growth of the correlation length near/far the critical point of a continuous phase transition. The problem is studied on a previously described neuronal network model for which is known the scaling of the correlation length with the size of the observation region. It is verified that the κc metric is maximized for the conditions at which a power law distribution of neuronal avalanches sizes is observed, thus characterizing well the critical state of the network. Potential applications and limitations for its use with currently available optical imaging techniques are discussed. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/188025 Aguilar Trejo, Eyisto José; Mártin, Daniel Alejandro; Grigera, Tomas Sebastian; Cannas, Sergio Alejandro; Chialvo, Dante Renato; Finite-size correlation behavior near a critical point: a simple metric for monitoring the state of a neural network; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 106; 054313; 5-2022; 1-5 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/188025 |
identifier_str_mv |
Aguilar Trejo, Eyisto José; Mártin, Daniel Alejandro; Grigera, Tomas Sebastian; Cannas, Sergio Alejandro; Chialvo, Dante Renato; Finite-size correlation behavior near a critical point: a simple metric for monitoring the state of a neural network; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 106; 054313; 5-2022; 1-5 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.48550/arxiv.2205.11341 info:eu-repo/semantics/altIdentifier/doi/10.48550/ARXIV.2205.11341 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.106.054313 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083495561003008 |
score |
13.22299 |