Controlling a complex system near its critical point via temporal correlations
- Autores
- Chialvo, Dante Renato; Cannas, Sergio Alejandro; Grigera, Tomas Sebastian; Mártin, Daniel Alejandro; Plenz, Dietmar
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many complex systems exhibit large fluctuations both across space and over time. These fluctuations have often been linked to the presence of some kind of critical phenomena, where it is well known that the emerging correlation functions in space and time are closely related to each other. Here we test whether the time correlation properties allow systems exhibiting a phase transition to self-tune to their critical point. We describe results in three models: the 2D Ising ferromagnetic model, the 3D Vicsek flocking model and a small-world neuronal network model. We demonstrate that feedback from the autocorrelation function of the order parameter fluctuations shifts the system towards its critical point. Our results rely on universal properties of critical systems and are expected to be relevant to a variety of other settings.
Fil: Chialvo, Dante Renato. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Grigera, Tomas Sebastian. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Mártin, Daniel Alejandro. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Plenz, Dietmar. National Institute of Mental Health; Estados Unidos - Materia
-
CRITICAL PHENOMENA
COMPLEX SYSTEMS
TEMPORAL CORRELATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/140223
Ver los metadatos del registro completo
id |
CONICETDig_49c4e63ba664eb53ee9d33585a7bbfc5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/140223 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Controlling a complex system near its critical point via temporal correlationsChialvo, Dante RenatoCannas, Sergio AlejandroGrigera, Tomas SebastianMártin, Daniel AlejandroPlenz, DietmarCRITICAL PHENOMENACOMPLEX SYSTEMSTEMPORAL CORRELATIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Many complex systems exhibit large fluctuations both across space and over time. These fluctuations have often been linked to the presence of some kind of critical phenomena, where it is well known that the emerging correlation functions in space and time are closely related to each other. Here we test whether the time correlation properties allow systems exhibiting a phase transition to self-tune to their critical point. We describe results in three models: the 2D Ising ferromagnetic model, the 3D Vicsek flocking model and a small-world neuronal network model. We demonstrate that feedback from the autocorrelation function of the order parameter fluctuations shifts the system towards its critical point. Our results rely on universal properties of critical systems and are expected to be relevant to a variety of other settings.Fil: Chialvo, Dante Renato. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Grigera, Tomas Sebastian. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Mártin, Daniel Alejandro. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Plenz, Dietmar. National Institute of Mental Health; Estados UnidosNature Publishing Group2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140223Chialvo, Dante Renato; Cannas, Sergio Alejandro; Grigera, Tomas Sebastian; Mártin, Daniel Alejandro; Plenz, Dietmar; Controlling a complex system near its critical point via temporal correlations; Nature Publishing Group; Scientific Reports; 10; 1; 12-2020; 1-72045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41598-020-69154-0info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-69154-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:24Zoai:ri.conicet.gov.ar:11336/140223instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:25.408CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Controlling a complex system near its critical point via temporal correlations |
title |
Controlling a complex system near its critical point via temporal correlations |
spellingShingle |
Controlling a complex system near its critical point via temporal correlations Chialvo, Dante Renato CRITICAL PHENOMENA COMPLEX SYSTEMS TEMPORAL CORRELATIONS |
title_short |
Controlling a complex system near its critical point via temporal correlations |
title_full |
Controlling a complex system near its critical point via temporal correlations |
title_fullStr |
Controlling a complex system near its critical point via temporal correlations |
title_full_unstemmed |
Controlling a complex system near its critical point via temporal correlations |
title_sort |
Controlling a complex system near its critical point via temporal correlations |
dc.creator.none.fl_str_mv |
Chialvo, Dante Renato Cannas, Sergio Alejandro Grigera, Tomas Sebastian Mártin, Daniel Alejandro Plenz, Dietmar |
author |
Chialvo, Dante Renato |
author_facet |
Chialvo, Dante Renato Cannas, Sergio Alejandro Grigera, Tomas Sebastian Mártin, Daniel Alejandro Plenz, Dietmar |
author_role |
author |
author2 |
Cannas, Sergio Alejandro Grigera, Tomas Sebastian Mártin, Daniel Alejandro Plenz, Dietmar |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
CRITICAL PHENOMENA COMPLEX SYSTEMS TEMPORAL CORRELATIONS |
topic |
CRITICAL PHENOMENA COMPLEX SYSTEMS TEMPORAL CORRELATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Many complex systems exhibit large fluctuations both across space and over time. These fluctuations have often been linked to the presence of some kind of critical phenomena, where it is well known that the emerging correlation functions in space and time are closely related to each other. Here we test whether the time correlation properties allow systems exhibiting a phase transition to self-tune to their critical point. We describe results in three models: the 2D Ising ferromagnetic model, the 3D Vicsek flocking model and a small-world neuronal network model. We demonstrate that feedback from the autocorrelation function of the order parameter fluctuations shifts the system towards its critical point. Our results rely on universal properties of critical systems and are expected to be relevant to a variety of other settings. Fil: Chialvo, Dante Renato. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Grigera, Tomas Sebastian. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina Fil: Mártin, Daniel Alejandro. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Plenz, Dietmar. National Institute of Mental Health; Estados Unidos |
description |
Many complex systems exhibit large fluctuations both across space and over time. These fluctuations have often been linked to the presence of some kind of critical phenomena, where it is well known that the emerging correlation functions in space and time are closely related to each other. Here we test whether the time correlation properties allow systems exhibiting a phase transition to self-tune to their critical point. We describe results in three models: the 2D Ising ferromagnetic model, the 3D Vicsek flocking model and a small-world neuronal network model. We demonstrate that feedback from the autocorrelation function of the order parameter fluctuations shifts the system towards its critical point. Our results rely on universal properties of critical systems and are expected to be relevant to a variety of other settings. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/140223 Chialvo, Dante Renato; Cannas, Sergio Alejandro; Grigera, Tomas Sebastian; Mártin, Daniel Alejandro; Plenz, Dietmar; Controlling a complex system near its critical point via temporal correlations; Nature Publishing Group; Scientific Reports; 10; 1; 12-2020; 1-7 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/140223 |
identifier_str_mv |
Chialvo, Dante Renato; Cannas, Sergio Alejandro; Grigera, Tomas Sebastian; Mártin, Daniel Alejandro; Plenz, Dietmar; Controlling a complex system near its critical point via temporal correlations; Nature Publishing Group; Scientific Reports; 10; 1; 12-2020; 1-7 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41598-020-69154-0 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-69154-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269093493735424 |
score |
13.13397 |