Controlling a complex system near its critical point via temporal correlations

Autores
Chialvo, Dante Renato; Cannas, Sergio Alejandro; Grigera, Tomas Sebastian; Mártin, Daniel Alejandro; Plenz, Dietmar
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Many complex systems exhibit large fluctuations both across space and over time. These fluctuations have often been linked to the presence of some kind of critical phenomena, where it is well known that the emerging correlation functions in space and time are closely related to each other. Here we test whether the time correlation properties allow systems exhibiting a phase transition to self-tune to their critical point. We describe results in three models: the 2D Ising ferromagnetic model, the 3D Vicsek flocking model and a small-world neuronal network model. We demonstrate that feedback from the autocorrelation function of the order parameter fluctuations shifts the system towards its critical point. Our results rely on universal properties of critical systems and are expected to be relevant to a variety of other settings.
Fil: Chialvo, Dante Renato. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Grigera, Tomas Sebastian. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Mártin, Daniel Alejandro. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Plenz, Dietmar. National Institute of Mental Health; Estados Unidos
Materia
CRITICAL PHENOMENA
COMPLEX SYSTEMS
TEMPORAL CORRELATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/140223

id CONICETDig_49c4e63ba664eb53ee9d33585a7bbfc5
oai_identifier_str oai:ri.conicet.gov.ar:11336/140223
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Controlling a complex system near its critical point via temporal correlationsChialvo, Dante RenatoCannas, Sergio AlejandroGrigera, Tomas SebastianMártin, Daniel AlejandroPlenz, DietmarCRITICAL PHENOMENACOMPLEX SYSTEMSTEMPORAL CORRELATIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Many complex systems exhibit large fluctuations both across space and over time. These fluctuations have often been linked to the presence of some kind of critical phenomena, where it is well known that the emerging correlation functions in space and time are closely related to each other. Here we test whether the time correlation properties allow systems exhibiting a phase transition to self-tune to their critical point. We describe results in three models: the 2D Ising ferromagnetic model, the 3D Vicsek flocking model and a small-world neuronal network model. We demonstrate that feedback from the autocorrelation function of the order parameter fluctuations shifts the system towards its critical point. Our results rely on universal properties of critical systems and are expected to be relevant to a variety of other settings.Fil: Chialvo, Dante Renato. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Grigera, Tomas Sebastian. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Mártin, Daniel Alejandro. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Plenz, Dietmar. National Institute of Mental Health; Estados UnidosNature Publishing Group2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140223Chialvo, Dante Renato; Cannas, Sergio Alejandro; Grigera, Tomas Sebastian; Mártin, Daniel Alejandro; Plenz, Dietmar; Controlling a complex system near its critical point via temporal correlations; Nature Publishing Group; Scientific Reports; 10; 1; 12-2020; 1-72045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41598-020-69154-0info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-69154-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:24Zoai:ri.conicet.gov.ar:11336/140223instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:25.408CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Controlling a complex system near its critical point via temporal correlations
title Controlling a complex system near its critical point via temporal correlations
spellingShingle Controlling a complex system near its critical point via temporal correlations
Chialvo, Dante Renato
CRITICAL PHENOMENA
COMPLEX SYSTEMS
TEMPORAL CORRELATIONS
title_short Controlling a complex system near its critical point via temporal correlations
title_full Controlling a complex system near its critical point via temporal correlations
title_fullStr Controlling a complex system near its critical point via temporal correlations
title_full_unstemmed Controlling a complex system near its critical point via temporal correlations
title_sort Controlling a complex system near its critical point via temporal correlations
dc.creator.none.fl_str_mv Chialvo, Dante Renato
Cannas, Sergio Alejandro
Grigera, Tomas Sebastian
Mártin, Daniel Alejandro
Plenz, Dietmar
author Chialvo, Dante Renato
author_facet Chialvo, Dante Renato
Cannas, Sergio Alejandro
Grigera, Tomas Sebastian
Mártin, Daniel Alejandro
Plenz, Dietmar
author_role author
author2 Cannas, Sergio Alejandro
Grigera, Tomas Sebastian
Mártin, Daniel Alejandro
Plenz, Dietmar
author2_role author
author
author
author
dc.subject.none.fl_str_mv CRITICAL PHENOMENA
COMPLEX SYSTEMS
TEMPORAL CORRELATIONS
topic CRITICAL PHENOMENA
COMPLEX SYSTEMS
TEMPORAL CORRELATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Many complex systems exhibit large fluctuations both across space and over time. These fluctuations have often been linked to the presence of some kind of critical phenomena, where it is well known that the emerging correlation functions in space and time are closely related to each other. Here we test whether the time correlation properties allow systems exhibiting a phase transition to self-tune to their critical point. We describe results in three models: the 2D Ising ferromagnetic model, the 3D Vicsek flocking model and a small-world neuronal network model. We demonstrate that feedback from the autocorrelation function of the order parameter fluctuations shifts the system towards its critical point. Our results rely on universal properties of critical systems and are expected to be relevant to a variety of other settings.
Fil: Chialvo, Dante Renato. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Grigera, Tomas Sebastian. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Mártin, Daniel Alejandro. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Plenz, Dietmar. National Institute of Mental Health; Estados Unidos
description Many complex systems exhibit large fluctuations both across space and over time. These fluctuations have often been linked to the presence of some kind of critical phenomena, where it is well known that the emerging correlation functions in space and time are closely related to each other. Here we test whether the time correlation properties allow systems exhibiting a phase transition to self-tune to their critical point. We describe results in three models: the 2D Ising ferromagnetic model, the 3D Vicsek flocking model and a small-world neuronal network model. We demonstrate that feedback from the autocorrelation function of the order parameter fluctuations shifts the system towards its critical point. Our results rely on universal properties of critical systems and are expected to be relevant to a variety of other settings.
publishDate 2020
dc.date.none.fl_str_mv 2020-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/140223
Chialvo, Dante Renato; Cannas, Sergio Alejandro; Grigera, Tomas Sebastian; Mártin, Daniel Alejandro; Plenz, Dietmar; Controlling a complex system near its critical point via temporal correlations; Nature Publishing Group; Scientific Reports; 10; 1; 12-2020; 1-7
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/140223
identifier_str_mv Chialvo, Dante Renato; Cannas, Sergio Alejandro; Grigera, Tomas Sebastian; Mártin, Daniel Alejandro; Plenz, Dietmar; Controlling a complex system near its critical point via temporal correlations; Nature Publishing Group; Scientific Reports; 10; 1; 12-2020; 1-7
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41598-020-69154-0
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-69154-0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269093493735424
score 13.13397