Entropic upper bound on gravitational binding energy

Autores
Vignat, C.; Plastino, Ángel Luis; Plastino, Ángel Ricardo
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove that the gravitational binding energy Ω of a self gravitating system described by a mass density distribution ρ(x) admits an upper bound B[ρ(x)] given by a simple function of an appropriate, non-additive Tsallis' power-law entropic functional Sq evaluated on the density ρ. The density distributions that saturate the entropic bound have the form of isotropic q-Gaussian distributions. These maximizer distributions correspond to the Plummer density profile, well-known in astrophysics. A heuristic scaling argument is advanced suggesting that the entropic bound B[ρ(x)] is unique, in the sense that it is unlikely that exhaustive entropic upper bounds not based on the alluded Sq entropic measure exit. The present findings provide a new link between the physics of self gravitating systems, on one hand, and the statistical formalism associated with non-additive, power-law entropic measures, on the other hand. © 2011 Elsevier B.V. All rights reserved.
Fil: Vignat, C.. Université d’Orsay; Francia
Fil: Plastino, Ángel Luis. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Plastino, Ángel Ricardo. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
ENTROPIC BOUND TO BINDING ENERGY
GRAVITATION
TSALLIS' STATISTICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/95036

id CONICETDig_fec3b74a333ead6dadb08c4c5b2d9c39
oai_identifier_str oai:ri.conicet.gov.ar:11336/95036
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Entropic upper bound on gravitational binding energyVignat, C.Plastino, Ángel LuisPlastino, Ángel RicardoENTROPIC BOUND TO BINDING ENERGYGRAVITATIONTSALLIS' STATISTICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We prove that the gravitational binding energy Ω of a self gravitating system described by a mass density distribution ρ(x) admits an upper bound B[ρ(x)] given by a simple function of an appropriate, non-additive Tsallis' power-law entropic functional Sq evaluated on the density ρ. The density distributions that saturate the entropic bound have the form of isotropic q-Gaussian distributions. These maximizer distributions correspond to the Plummer density profile, well-known in astrophysics. A heuristic scaling argument is advanced suggesting that the entropic bound B[ρ(x)] is unique, in the sense that it is unlikely that exhaustive entropic upper bounds not based on the alluded Sq entropic measure exit. The present findings provide a new link between the physics of self gravitating systems, on one hand, and the statistical formalism associated with non-additive, power-law entropic measures, on the other hand. © 2011 Elsevier B.V. All rights reserved.Fil: Vignat, C.. Université d’Orsay; FranciaFil: Plastino, Ángel Luis. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Plastino, Ángel Ricardo. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2011-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95036Vignat, C.; Plastino, Ángel Luis; Plastino, Ángel Ricardo; Entropic upper bound on gravitational binding energy; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 390; 13; 7-2011; 2491-24960378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S037843711100183Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2011.02.042info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:02:35Zoai:ri.conicet.gov.ar:11336/95036instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:02:35.364CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Entropic upper bound on gravitational binding energy
title Entropic upper bound on gravitational binding energy
spellingShingle Entropic upper bound on gravitational binding energy
Vignat, C.
ENTROPIC BOUND TO BINDING ENERGY
GRAVITATION
TSALLIS' STATISTICS
title_short Entropic upper bound on gravitational binding energy
title_full Entropic upper bound on gravitational binding energy
title_fullStr Entropic upper bound on gravitational binding energy
title_full_unstemmed Entropic upper bound on gravitational binding energy
title_sort Entropic upper bound on gravitational binding energy
dc.creator.none.fl_str_mv Vignat, C.
Plastino, Ángel Luis
Plastino, Ángel Ricardo
author Vignat, C.
author_facet Vignat, C.
Plastino, Ángel Luis
Plastino, Ángel Ricardo
author_role author
author2 Plastino, Ángel Luis
Plastino, Ángel Ricardo
author2_role author
author
dc.subject.none.fl_str_mv ENTROPIC BOUND TO BINDING ENERGY
GRAVITATION
TSALLIS' STATISTICS
topic ENTROPIC BOUND TO BINDING ENERGY
GRAVITATION
TSALLIS' STATISTICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove that the gravitational binding energy Ω of a self gravitating system described by a mass density distribution ρ(x) admits an upper bound B[ρ(x)] given by a simple function of an appropriate, non-additive Tsallis' power-law entropic functional Sq evaluated on the density ρ. The density distributions that saturate the entropic bound have the form of isotropic q-Gaussian distributions. These maximizer distributions correspond to the Plummer density profile, well-known in astrophysics. A heuristic scaling argument is advanced suggesting that the entropic bound B[ρ(x)] is unique, in the sense that it is unlikely that exhaustive entropic upper bounds not based on the alluded Sq entropic measure exit. The present findings provide a new link between the physics of self gravitating systems, on one hand, and the statistical formalism associated with non-additive, power-law entropic measures, on the other hand. © 2011 Elsevier B.V. All rights reserved.
Fil: Vignat, C.. Université d’Orsay; Francia
Fil: Plastino, Ángel Luis. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Plastino, Ángel Ricardo. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We prove that the gravitational binding energy Ω of a self gravitating system described by a mass density distribution ρ(x) admits an upper bound B[ρ(x)] given by a simple function of an appropriate, non-additive Tsallis' power-law entropic functional Sq evaluated on the density ρ. The density distributions that saturate the entropic bound have the form of isotropic q-Gaussian distributions. These maximizer distributions correspond to the Plummer density profile, well-known in astrophysics. A heuristic scaling argument is advanced suggesting that the entropic bound B[ρ(x)] is unique, in the sense that it is unlikely that exhaustive entropic upper bounds not based on the alluded Sq entropic measure exit. The present findings provide a new link between the physics of self gravitating systems, on one hand, and the statistical formalism associated with non-additive, power-law entropic measures, on the other hand. © 2011 Elsevier B.V. All rights reserved.
publishDate 2011
dc.date.none.fl_str_mv 2011-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/95036
Vignat, C.; Plastino, Ángel Luis; Plastino, Ángel Ricardo; Entropic upper bound on gravitational binding energy; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 390; 13; 7-2011; 2491-2496
0378-4371
CONICET Digital
CONICET
url http://hdl.handle.net/11336/95036
identifier_str_mv Vignat, C.; Plastino, Ángel Luis; Plastino, Ángel Ricardo; Entropic upper bound on gravitational binding energy; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 390; 13; 7-2011; 2491-2496
0378-4371
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S037843711100183X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2011.02.042
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781237710028800
score 12.982451