Entropic upper bound on gravitational binding energy
- Autores
- Vignat, C.; Plastino, Ángel Luis; Plastino, Ángel Ricardo
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that the gravitational binding energy Ω of a self gravitating system described by a mass density distribution ρ(x) admits an upper bound B[ρ(x)] given by a simple function of an appropriate, non-additive Tsallis' power-law entropic functional Sq evaluated on the density ρ. The density distributions that saturate the entropic bound have the form of isotropic q-Gaussian distributions. These maximizer distributions correspond to the Plummer density profile, well-known in astrophysics. A heuristic scaling argument is advanced suggesting that the entropic bound B[ρ(x)] is unique, in the sense that it is unlikely that exhaustive entropic upper bounds not based on the alluded Sq entropic measure exit. The present findings provide a new link between the physics of self gravitating systems, on one hand, and the statistical formalism associated with non-additive, power-law entropic measures, on the other hand. © 2011 Elsevier B.V. All rights reserved.
Fil: Vignat, C.. Université d’Orsay; Francia
Fil: Plastino, Ángel Luis. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Plastino, Ángel Ricardo. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
ENTROPIC BOUND TO BINDING ENERGY
GRAVITATION
TSALLIS' STATISTICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/95036
Ver los metadatos del registro completo
id |
CONICETDig_fec3b74a333ead6dadb08c4c5b2d9c39 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/95036 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Entropic upper bound on gravitational binding energyVignat, C.Plastino, Ángel LuisPlastino, Ángel RicardoENTROPIC BOUND TO BINDING ENERGYGRAVITATIONTSALLIS' STATISTICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We prove that the gravitational binding energy Ω of a self gravitating system described by a mass density distribution ρ(x) admits an upper bound B[ρ(x)] given by a simple function of an appropriate, non-additive Tsallis' power-law entropic functional Sq evaluated on the density ρ. The density distributions that saturate the entropic bound have the form of isotropic q-Gaussian distributions. These maximizer distributions correspond to the Plummer density profile, well-known in astrophysics. A heuristic scaling argument is advanced suggesting that the entropic bound B[ρ(x)] is unique, in the sense that it is unlikely that exhaustive entropic upper bounds not based on the alluded Sq entropic measure exit. The present findings provide a new link between the physics of self gravitating systems, on one hand, and the statistical formalism associated with non-additive, power-law entropic measures, on the other hand. © 2011 Elsevier B.V. All rights reserved.Fil: Vignat, C.. Université d’Orsay; FranciaFil: Plastino, Ángel Luis. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Plastino, Ángel Ricardo. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2011-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95036Vignat, C.; Plastino, Ángel Luis; Plastino, Ángel Ricardo; Entropic upper bound on gravitational binding energy; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 390; 13; 7-2011; 2491-24960378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S037843711100183Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2011.02.042info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:02:35Zoai:ri.conicet.gov.ar:11336/95036instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:02:35.364CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Entropic upper bound on gravitational binding energy |
title |
Entropic upper bound on gravitational binding energy |
spellingShingle |
Entropic upper bound on gravitational binding energy Vignat, C. ENTROPIC BOUND TO BINDING ENERGY GRAVITATION TSALLIS' STATISTICS |
title_short |
Entropic upper bound on gravitational binding energy |
title_full |
Entropic upper bound on gravitational binding energy |
title_fullStr |
Entropic upper bound on gravitational binding energy |
title_full_unstemmed |
Entropic upper bound on gravitational binding energy |
title_sort |
Entropic upper bound on gravitational binding energy |
dc.creator.none.fl_str_mv |
Vignat, C. Plastino, Ángel Luis Plastino, Ángel Ricardo |
author |
Vignat, C. |
author_facet |
Vignat, C. Plastino, Ángel Luis Plastino, Ángel Ricardo |
author_role |
author |
author2 |
Plastino, Ángel Luis Plastino, Ángel Ricardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ENTROPIC BOUND TO BINDING ENERGY GRAVITATION TSALLIS' STATISTICS |
topic |
ENTROPIC BOUND TO BINDING ENERGY GRAVITATION TSALLIS' STATISTICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove that the gravitational binding energy Ω of a self gravitating system described by a mass density distribution ρ(x) admits an upper bound B[ρ(x)] given by a simple function of an appropriate, non-additive Tsallis' power-law entropic functional Sq evaluated on the density ρ. The density distributions that saturate the entropic bound have the form of isotropic q-Gaussian distributions. These maximizer distributions correspond to the Plummer density profile, well-known in astrophysics. A heuristic scaling argument is advanced suggesting that the entropic bound B[ρ(x)] is unique, in the sense that it is unlikely that exhaustive entropic upper bounds not based on the alluded Sq entropic measure exit. The present findings provide a new link between the physics of self gravitating systems, on one hand, and the statistical formalism associated with non-additive, power-law entropic measures, on the other hand. © 2011 Elsevier B.V. All rights reserved. Fil: Vignat, C.. Université d’Orsay; Francia Fil: Plastino, Ángel Luis. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Plastino, Ángel Ricardo. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We prove that the gravitational binding energy Ω of a self gravitating system described by a mass density distribution ρ(x) admits an upper bound B[ρ(x)] given by a simple function of an appropriate, non-additive Tsallis' power-law entropic functional Sq evaluated on the density ρ. The density distributions that saturate the entropic bound have the form of isotropic q-Gaussian distributions. These maximizer distributions correspond to the Plummer density profile, well-known in astrophysics. A heuristic scaling argument is advanced suggesting that the entropic bound B[ρ(x)] is unique, in the sense that it is unlikely that exhaustive entropic upper bounds not based on the alluded Sq entropic measure exit. The present findings provide a new link between the physics of self gravitating systems, on one hand, and the statistical formalism associated with non-additive, power-law entropic measures, on the other hand. © 2011 Elsevier B.V. All rights reserved. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/95036 Vignat, C.; Plastino, Ángel Luis; Plastino, Ángel Ricardo; Entropic upper bound on gravitational binding energy; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 390; 13; 7-2011; 2491-2496 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/95036 |
identifier_str_mv |
Vignat, C.; Plastino, Ángel Luis; Plastino, Ángel Ricardo; Entropic upper bound on gravitational binding energy; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 390; 13; 7-2011; 2491-2496 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S037843711100183X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2011.02.042 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781237710028800 |
score |
12.982451 |