Concrete minimal 3 × 3 Hermitian matrices and some general cases
- Autores
- Klobouk, Abel H.; Varela, Alejandro
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a Hermitian matrix M ∈ M3(ℂ) we describe explicitly the real diagonal matrices DM such that ║M + DM║ ≤ ║M + D║ for all real diagonal matrices D ∈ M3(ℂ), where ║ · ║ denotes the operator norm. Moreover, we generalize our techniques to some n × n cases.
Fil: Klobouk, Abel H.. Universidad Nacional de Luján; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina - Materia
-
MINIMAL HERMITIAN MATRIX
DIAGONAL MATRIX
QUOTIENT OPERATOR NORM
BEST APROXIMATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/46235
Ver los metadatos del registro completo
id |
CONICETDig_fec06855d74fd23d85e0d8b4a81d03f7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/46235 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Concrete minimal 3 × 3 Hermitian matrices and some general casesKlobouk, Abel H.Varela, AlejandroMINIMAL HERMITIAN MATRIXDIAGONAL MATRIXQUOTIENT OPERATOR NORMBEST APROXIMATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a Hermitian matrix M ∈ M3(ℂ) we describe explicitly the real diagonal matrices DM such that ║M + DM║ ≤ ║M + D║ for all real diagonal matrices D ∈ M3(ℂ), where ║ · ║ denotes the operator norm. Moreover, we generalize our techniques to some n × n cases.Fil: Klobouk, Abel H.. Universidad Nacional de Luján; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaDe Gruyter2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46235Klobouk, Abel H.; Varela, Alejandro; Concrete minimal 3 × 3 Hermitian matrices and some general cases; De Gruyter; Demonstratio Mathematica; 50; 1; 12-2017; 330-3502391-4661CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.degruyter.com/view/j/dema.2017.50.issue-1/dema-2017-0032/dema-2017-0032.xmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/dema-2017-0032info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:11Zoai:ri.conicet.gov.ar:11336/46235instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:11.618CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Concrete minimal 3 × 3 Hermitian matrices and some general cases |
title |
Concrete minimal 3 × 3 Hermitian matrices and some general cases |
spellingShingle |
Concrete minimal 3 × 3 Hermitian matrices and some general cases Klobouk, Abel H. MINIMAL HERMITIAN MATRIX DIAGONAL MATRIX QUOTIENT OPERATOR NORM BEST APROXIMATION |
title_short |
Concrete minimal 3 × 3 Hermitian matrices and some general cases |
title_full |
Concrete minimal 3 × 3 Hermitian matrices and some general cases |
title_fullStr |
Concrete minimal 3 × 3 Hermitian matrices and some general cases |
title_full_unstemmed |
Concrete minimal 3 × 3 Hermitian matrices and some general cases |
title_sort |
Concrete minimal 3 × 3 Hermitian matrices and some general cases |
dc.creator.none.fl_str_mv |
Klobouk, Abel H. Varela, Alejandro |
author |
Klobouk, Abel H. |
author_facet |
Klobouk, Abel H. Varela, Alejandro |
author_role |
author |
author2 |
Varela, Alejandro |
author2_role |
author |
dc.subject.none.fl_str_mv |
MINIMAL HERMITIAN MATRIX DIAGONAL MATRIX QUOTIENT OPERATOR NORM BEST APROXIMATION |
topic |
MINIMAL HERMITIAN MATRIX DIAGONAL MATRIX QUOTIENT OPERATOR NORM BEST APROXIMATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a Hermitian matrix M ∈ M3(ℂ) we describe explicitly the real diagonal matrices DM such that ║M + DM║ ≤ ║M + D║ for all real diagonal matrices D ∈ M3(ℂ), where ║ · ║ denotes the operator norm. Moreover, we generalize our techniques to some n × n cases. Fil: Klobouk, Abel H.. Universidad Nacional de Luján; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina |
description |
Given a Hermitian matrix M ∈ M3(ℂ) we describe explicitly the real diagonal matrices DM such that ║M + DM║ ≤ ║M + D║ for all real diagonal matrices D ∈ M3(ℂ), where ║ · ║ denotes the operator norm. Moreover, we generalize our techniques to some n × n cases. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/46235 Klobouk, Abel H.; Varela, Alejandro; Concrete minimal 3 × 3 Hermitian matrices and some general cases; De Gruyter; Demonstratio Mathematica; 50; 1; 12-2017; 330-350 2391-4661 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/46235 |
identifier_str_mv |
Klobouk, Abel H.; Varela, Alejandro; Concrete minimal 3 × 3 Hermitian matrices and some general cases; De Gruyter; Demonstratio Mathematica; 50; 1; 12-2017; 330-350 2391-4661 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.degruyter.com/view/j/dema.2017.50.issue-1/dema-2017-0032/dema-2017-0032.xml info:eu-repo/semantics/altIdentifier/doi/10.1515/dema-2017-0032 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613648028270592 |
score |
13.070432 |