Propiedades termodinámicas de sistemas acuosos en la escala nanoscópica

Autores
Pérez Sirkin, Yamila Anahí
Año de publicación
2018
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Scherlis Perel, Damian Ariel
Murgida, Daniel Horacio
Descripción
Thermodynamic properties of aqueous systems in nanoscopic scaleIn the present thesis, the thermodynamical properties of aqueous systems in the nanos-cale regime were investigated. In particular, the following phenomena were analyzed: i)the vapor pressure of water-ions systems, from the macroscopic scale to aggregates ofonly a few particles. ii) The nucleation of bubbles on nanoelectrodes. iii) The effect ofconfinement on the water dissociation constant.The GCS (Grand Canonical Screening) methodology, which has been developed in ourgroup before this thesis, allows us to obtain the vapor pressure of systems that havea liquid-vapor interface. In the present thesis, this methodology has been modified inorder to study the vapor pressure of systems without an interface, with the purpose ofapplying it to more complex systems, like fuel cells. The effect of electrolytes on thevapor pressure of water has been studied from both the experimental and theoreticalpoints of view in the case of bulk systems, however the resolution of the experiments fornanoaggregate does not allow a description on the microscopic scale, and is the cause ofone of the greatest uncertainties in atmospheric predictions. In this context, we studythe ability of different models, both atomistic and coarse-grained, to predict the vaporpressure of systems of just a few molecules.The nucleation of nanobubbles on nanoscopic electrodes has been frequently studiedin recent decades, not only for its relevance from a chemical-physics standpoint, whichleaves many open questions regarding the nucleation mechanism and the stability, butalso because of its importance in the design and optimization of electrocatalytic tech-nologies. In this thesis, this phenomenon has been studied through molecular dynamicssimulations with coarse-grained models in collaboration with an experimental group atThe University of Utah.Different authors have speculated on how confinement can affect the autodissociation ofwater, but this question has not yet been answered through experiments, and has beenscarcely addressed from simulations. Recent studies suggest an increase of the dissocia-tion constant in bidimiensional nanometric pores. In the present thesis, this effect hasbeen studied under a more extreme confinement, in particular in a (6,6) carbon nano-tube, where the opposite effect was observed.To study these problems, this thesis has used different classical, quantum, and QM-MMsimulation schemes, including the following open source software: LAMMPS, MCCCS-Towhee and Quantum Espresso. It has often been necessary to implement new featureswithin these programs, as well as different tools for data analysis .
In the present thesis, the thermodynamical properties of aqueous systems in the nanoscale regime were investigated. In particular, the following phenomena were analyzed: i) the vapor pressure of water-ions systems, from the macroscopic scale to aggregates of only a few particles. ii) The nucleation of bubbles on nanoelectrodes. iii) The effect of confinement on the water dissociation constant. The GCS (Grand Canonical Screening) methodology, which has been developed in our group before this thesis, allows us to obtain the vapor pressure of systems that have a liquid-vapor interface. In the present thesis, this methodology has been modified in order to study the vapor pressure of systems without an interface, with the purpose of applying it to more complex systems, like fuel cells. The effect of electrolytes on the vapor pressure of water has been studied from both the experimental and theoretical points of view in the case of bulk systems, however the resolution of the experiments for nanoaggregate does not allow a description on the microscopic scale, and is the cause of one of the greatest uncertainties in atmospheric predictions. In this context, we study the ability of different models, both atomistic and coarse-grained, to predict the vapor pressure of systems of just a few molecules. The nucleation of nanobubbles on nanoscopic electrodes has been frequently studied in recent decades, not only for its relevance from a chemical-physics standpoint, which leaves many open questions regarding the nucleation mechanism and the stability, but also because of its importance in the design and optimization of electrocatalytic technologies. In this thesis, this phenomenon has been studied through molecular dynamics simulations with coarse-grained models in collaboration with an experimental group at The University of Utah. Different authors have speculated on how confinement can affect the autodissociation of water, but this question has not yet been answered through experiments, and has been scarcely addressed from simulations. Recent studies suggest an increase of the dissociation constant in bidimiensional nanometric pores. In the present thesis, this effect has been studied under a more extreme confinement, in particular in a (6,6) carbon nanotube, where the opposite effect was observed. To study these problems, this thesis has used different classical, quantum, and QM-MM simulation schemes, including the following open source software: LAMMPS, MCCCSTowhee and Quantum Espresso. It has often been necessary to implement new features within these programs, as well as different tools for data analysis .
Fil: Pérez Sirkin, Yamila Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Materia
Termodinamica
Agua
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/80061

id CONICETDig_fe9d159439980e788cb408b9f1fbc3b5
oai_identifier_str oai:ri.conicet.gov.ar:11336/80061
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Propiedades termodinámicas de sistemas acuosos en la escala nanoscópicaThermodynamic properties of aqueous systems in the nanoscopic scalePérez Sirkin, Yamila AnahíTermodinamicaAguahttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Thermodynamic properties of aqueous systems in nanoscopic scaleIn the present thesis, the thermodynamical properties of aqueous systems in the nanos-cale regime were investigated. In particular, the following phenomena were analyzed: i)the vapor pressure of water-ions systems, from the macroscopic scale to aggregates ofonly a few particles. ii) The nucleation of bubbles on nanoelectrodes. iii) The effect ofconfinement on the water dissociation constant.The GCS (Grand Canonical Screening) methodology, which has been developed in ourgroup before this thesis, allows us to obtain the vapor pressure of systems that havea liquid-vapor interface. In the present thesis, this methodology has been modified inorder to study the vapor pressure of systems without an interface, with the purpose ofapplying it to more complex systems, like fuel cells. The effect of electrolytes on thevapor pressure of water has been studied from both the experimental and theoreticalpoints of view in the case of bulk systems, however the resolution of the experiments fornanoaggregate does not allow a description on the microscopic scale, and is the cause ofone of the greatest uncertainties in atmospheric predictions. In this context, we studythe ability of different models, both atomistic and coarse-grained, to predict the vaporpressure of systems of just a few molecules.The nucleation of nanobubbles on nanoscopic electrodes has been frequently studiedin recent decades, not only for its relevance from a chemical-physics standpoint, whichleaves many open questions regarding the nucleation mechanism and the stability, butalso because of its importance in the design and optimization of electrocatalytic tech-nologies. In this thesis, this phenomenon has been studied through molecular dynamicssimulations with coarse-grained models in collaboration with an experimental group atThe University of Utah.Different authors have speculated on how confinement can affect the autodissociation ofwater, but this question has not yet been answered through experiments, and has beenscarcely addressed from simulations. Recent studies suggest an increase of the dissocia-tion constant in bidimiensional nanometric pores. In the present thesis, this effect hasbeen studied under a more extreme confinement, in particular in a (6,6) carbon nano-tube, where the opposite effect was observed.To study these problems, this thesis has used different classical, quantum, and QM-MMsimulation schemes, including the following open source software: LAMMPS, MCCCS-Towhee and Quantum Espresso. It has often been necessary to implement new featureswithin these programs, as well as different tools for data analysis .In the present thesis, the thermodynamical properties of aqueous systems in the nanoscale regime were investigated. In particular, the following phenomena were analyzed: i) the vapor pressure of water-ions systems, from the macroscopic scale to aggregates of only a few particles. ii) The nucleation of bubbles on nanoelectrodes. iii) The effect of confinement on the water dissociation constant. The GCS (Grand Canonical Screening) methodology, which has been developed in our group before this thesis, allows us to obtain the vapor pressure of systems that have a liquid-vapor interface. In the present thesis, this methodology has been modified in order to study the vapor pressure of systems without an interface, with the purpose of applying it to more complex systems, like fuel cells. The effect of electrolytes on the vapor pressure of water has been studied from both the experimental and theoretical points of view in the case of bulk systems, however the resolution of the experiments for nanoaggregate does not allow a description on the microscopic scale, and is the cause of one of the greatest uncertainties in atmospheric predictions. In this context, we study the ability of different models, both atomistic and coarse-grained, to predict the vapor pressure of systems of just a few molecules. The nucleation of nanobubbles on nanoscopic electrodes has been frequently studied in recent decades, not only for its relevance from a chemical-physics standpoint, which leaves many open questions regarding the nucleation mechanism and the stability, but also because of its importance in the design and optimization of electrocatalytic technologies. In this thesis, this phenomenon has been studied through molecular dynamics simulations with coarse-grained models in collaboration with an experimental group at The University of Utah. Different authors have speculated on how confinement can affect the autodissociation of water, but this question has not yet been answered through experiments, and has been scarcely addressed from simulations. Recent studies suggest an increase of the dissociation constant in bidimiensional nanometric pores. In the present thesis, this effect has been studied under a more extreme confinement, in particular in a (6,6) carbon nanotube, where the opposite effect was observed. To study these problems, this thesis has used different classical, quantum, and QM-MM simulation schemes, including the following open source software: LAMMPS, MCCCSTowhee and Quantum Espresso. It has often been necessary to implement new features within these programs, as well as different tools for data analysis .Fil: Pérez Sirkin, Yamila Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaScherlis Perel, Damian ArielMurgida, Daniel Horacio2018-12-14info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80061Pérez Sirkin, Yamila Anahí; Scherlis Perel, Damian Ariel; Murgida, Daniel Horacio; Propiedades termodinámicas de sistemas acuosos en la escala nanoscópica; 14-12-2018CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://digital.bl.fcen.uba.ar/collection/tesis/document/tesis_n6557_PerezSirkininfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:01Zoai:ri.conicet.gov.ar:11336/80061instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:02.184CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Propiedades termodinámicas de sistemas acuosos en la escala nanoscópica
Thermodynamic properties of aqueous systems in the nanoscopic scale
title Propiedades termodinámicas de sistemas acuosos en la escala nanoscópica
spellingShingle Propiedades termodinámicas de sistemas acuosos en la escala nanoscópica
Pérez Sirkin, Yamila Anahí
Termodinamica
Agua
title_short Propiedades termodinámicas de sistemas acuosos en la escala nanoscópica
title_full Propiedades termodinámicas de sistemas acuosos en la escala nanoscópica
title_fullStr Propiedades termodinámicas de sistemas acuosos en la escala nanoscópica
title_full_unstemmed Propiedades termodinámicas de sistemas acuosos en la escala nanoscópica
title_sort Propiedades termodinámicas de sistemas acuosos en la escala nanoscópica
dc.creator.none.fl_str_mv Pérez Sirkin, Yamila Anahí
author Pérez Sirkin, Yamila Anahí
author_facet Pérez Sirkin, Yamila Anahí
author_role author
dc.contributor.none.fl_str_mv Scherlis Perel, Damian Ariel
Murgida, Daniel Horacio
dc.subject.none.fl_str_mv Termodinamica
Agua
topic Termodinamica
Agua
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Thermodynamic properties of aqueous systems in nanoscopic scaleIn the present thesis, the thermodynamical properties of aqueous systems in the nanos-cale regime were investigated. In particular, the following phenomena were analyzed: i)the vapor pressure of water-ions systems, from the macroscopic scale to aggregates ofonly a few particles. ii) The nucleation of bubbles on nanoelectrodes. iii) The effect ofconfinement on the water dissociation constant.The GCS (Grand Canonical Screening) methodology, which has been developed in ourgroup before this thesis, allows us to obtain the vapor pressure of systems that havea liquid-vapor interface. In the present thesis, this methodology has been modified inorder to study the vapor pressure of systems without an interface, with the purpose ofapplying it to more complex systems, like fuel cells. The effect of electrolytes on thevapor pressure of water has been studied from both the experimental and theoreticalpoints of view in the case of bulk systems, however the resolution of the experiments fornanoaggregate does not allow a description on the microscopic scale, and is the cause ofone of the greatest uncertainties in atmospheric predictions. In this context, we studythe ability of different models, both atomistic and coarse-grained, to predict the vaporpressure of systems of just a few molecules.The nucleation of nanobubbles on nanoscopic electrodes has been frequently studiedin recent decades, not only for its relevance from a chemical-physics standpoint, whichleaves many open questions regarding the nucleation mechanism and the stability, butalso because of its importance in the design and optimization of electrocatalytic tech-nologies. In this thesis, this phenomenon has been studied through molecular dynamicssimulations with coarse-grained models in collaboration with an experimental group atThe University of Utah.Different authors have speculated on how confinement can affect the autodissociation ofwater, but this question has not yet been answered through experiments, and has beenscarcely addressed from simulations. Recent studies suggest an increase of the dissocia-tion constant in bidimiensional nanometric pores. In the present thesis, this effect hasbeen studied under a more extreme confinement, in particular in a (6,6) carbon nano-tube, where the opposite effect was observed.To study these problems, this thesis has used different classical, quantum, and QM-MMsimulation schemes, including the following open source software: LAMMPS, MCCCS-Towhee and Quantum Espresso. It has often been necessary to implement new featureswithin these programs, as well as different tools for data analysis .
In the present thesis, the thermodynamical properties of aqueous systems in the nanoscale regime were investigated. In particular, the following phenomena were analyzed: i) the vapor pressure of water-ions systems, from the macroscopic scale to aggregates of only a few particles. ii) The nucleation of bubbles on nanoelectrodes. iii) The effect of confinement on the water dissociation constant. The GCS (Grand Canonical Screening) methodology, which has been developed in our group before this thesis, allows us to obtain the vapor pressure of systems that have a liquid-vapor interface. In the present thesis, this methodology has been modified in order to study the vapor pressure of systems without an interface, with the purpose of applying it to more complex systems, like fuel cells. The effect of electrolytes on the vapor pressure of water has been studied from both the experimental and theoretical points of view in the case of bulk systems, however the resolution of the experiments for nanoaggregate does not allow a description on the microscopic scale, and is the cause of one of the greatest uncertainties in atmospheric predictions. In this context, we study the ability of different models, both atomistic and coarse-grained, to predict the vapor pressure of systems of just a few molecules. The nucleation of nanobubbles on nanoscopic electrodes has been frequently studied in recent decades, not only for its relevance from a chemical-physics standpoint, which leaves many open questions regarding the nucleation mechanism and the stability, but also because of its importance in the design and optimization of electrocatalytic technologies. In this thesis, this phenomenon has been studied through molecular dynamics simulations with coarse-grained models in collaboration with an experimental group at The University of Utah. Different authors have speculated on how confinement can affect the autodissociation of water, but this question has not yet been answered through experiments, and has been scarcely addressed from simulations. Recent studies suggest an increase of the dissociation constant in bidimiensional nanometric pores. In the present thesis, this effect has been studied under a more extreme confinement, in particular in a (6,6) carbon nanotube, where the opposite effect was observed. To study these problems, this thesis has used different classical, quantum, and QM-MM simulation schemes, including the following open source software: LAMMPS, MCCCSTowhee and Quantum Espresso. It has often been necessary to implement new features within these programs, as well as different tools for data analysis .
Fil: Pérez Sirkin, Yamila Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
description Thermodynamic properties of aqueous systems in nanoscopic scaleIn the present thesis, the thermodynamical properties of aqueous systems in the nanos-cale regime were investigated. In particular, the following phenomena were analyzed: i)the vapor pressure of water-ions systems, from the macroscopic scale to aggregates ofonly a few particles. ii) The nucleation of bubbles on nanoelectrodes. iii) The effect ofconfinement on the water dissociation constant.The GCS (Grand Canonical Screening) methodology, which has been developed in ourgroup before this thesis, allows us to obtain the vapor pressure of systems that havea liquid-vapor interface. In the present thesis, this methodology has been modified inorder to study the vapor pressure of systems without an interface, with the purpose ofapplying it to more complex systems, like fuel cells. The effect of electrolytes on thevapor pressure of water has been studied from both the experimental and theoreticalpoints of view in the case of bulk systems, however the resolution of the experiments fornanoaggregate does not allow a description on the microscopic scale, and is the cause ofone of the greatest uncertainties in atmospheric predictions. In this context, we studythe ability of different models, both atomistic and coarse-grained, to predict the vaporpressure of systems of just a few molecules.The nucleation of nanobubbles on nanoscopic electrodes has been frequently studiedin recent decades, not only for its relevance from a chemical-physics standpoint, whichleaves many open questions regarding the nucleation mechanism and the stability, butalso because of its importance in the design and optimization of electrocatalytic tech-nologies. In this thesis, this phenomenon has been studied through molecular dynamicssimulations with coarse-grained models in collaboration with an experimental group atThe University of Utah.Different authors have speculated on how confinement can affect the autodissociation ofwater, but this question has not yet been answered through experiments, and has beenscarcely addressed from simulations. Recent studies suggest an increase of the dissocia-tion constant in bidimiensional nanometric pores. In the present thesis, this effect hasbeen studied under a more extreme confinement, in particular in a (6,6) carbon nano-tube, where the opposite effect was observed.To study these problems, this thesis has used different classical, quantum, and QM-MMsimulation schemes, including the following open source software: LAMMPS, MCCCS-Towhee and Quantum Espresso. It has often been necessary to implement new featureswithin these programs, as well as different tools for data analysis .
publishDate 2018
dc.date.none.fl_str_mv 2018-12-14
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/80061
Pérez Sirkin, Yamila Anahí; Scherlis Perel, Damian Ariel; Murgida, Daniel Horacio; Propiedades termodinámicas de sistemas acuosos en la escala nanoscópica; 14-12-2018
CONICET Digital
CONICET
url http://hdl.handle.net/11336/80061
identifier_str_mv Pérez Sirkin, Yamila Anahí; Scherlis Perel, Damian Ariel; Murgida, Daniel Horacio; Propiedades termodinámicas de sistemas acuosos en la escala nanoscópica; 14-12-2018
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://digital.bl.fcen.uba.ar/collection/tesis/document/tesis_n6557_PerezSirkin
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981330204229632
score 12.48226