Superrational types

Autores
Tohmé, Fernando Abel; Viglizzo, Ignacio Dario
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a formal analysis of Douglas Hofstadter?s concept of superrationality. We start by defining superrationally justifiable actions, and study them in symmetric games. We then model the beliefs of the players, in a way that leads them to different choices than the usual assumption of rationality by restricting the range of conceivable choices. These beliefs are captured in the formal notion of type drawn from epistemic game theory. The theory of coalgebras is used to frame type spaces and to account for the existence of some of them. We find conditions that guarantee superrational outcomes.
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Viglizzo, Ignacio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Materia
SUPERRATIONALITY
BAYESIAN GAMES
STRATEGIC BELIEF MODELS
TYPES
COALGEBRAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/92869

id CONICETDig_fe926df013f43c30a0169d17ba31baea
oai_identifier_str oai:ri.conicet.gov.ar:11336/92869
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Superrational typesTohmé, Fernando AbelViglizzo, Ignacio DarioSUPERRATIONALITYBAYESIAN GAMESSTRATEGIC BELIEF MODELSTYPESCOALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present a formal analysis of Douglas Hofstadter?s concept of superrationality. We start by defining superrationally justifiable actions, and study them in symmetric games. We then model the beliefs of the players, in a way that leads them to different choices than the usual assumption of rationality by restricting the range of conceivable choices. These beliefs are captured in the formal notion of type drawn from epistemic game theory. The theory of coalgebras is used to frame type spaces and to account for the existence of some of them. We find conditions that guarantee superrational outcomes.Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Viglizzo, Ignacio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaOxford University Press2019-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92869Tohmé, Fernando Abel; Viglizzo, Ignacio Dario; Superrational types; Oxford University Press; Logic Journal of the IGPL (print); 27; 6; 4-2019; 847–8641367-07511368-9894CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/jigpal/jzz007info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jigpal/article-abstract/27/6/847/5424052info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1802.06888info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:07:02Zoai:ri.conicet.gov.ar:11336/92869instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:07:02.952CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Superrational types
title Superrational types
spellingShingle Superrational types
Tohmé, Fernando Abel
SUPERRATIONALITY
BAYESIAN GAMES
STRATEGIC BELIEF MODELS
TYPES
COALGEBRAS
title_short Superrational types
title_full Superrational types
title_fullStr Superrational types
title_full_unstemmed Superrational types
title_sort Superrational types
dc.creator.none.fl_str_mv Tohmé, Fernando Abel
Viglizzo, Ignacio Dario
author Tohmé, Fernando Abel
author_facet Tohmé, Fernando Abel
Viglizzo, Ignacio Dario
author_role author
author2 Viglizzo, Ignacio Dario
author2_role author
dc.subject.none.fl_str_mv SUPERRATIONALITY
BAYESIAN GAMES
STRATEGIC BELIEF MODELS
TYPES
COALGEBRAS
topic SUPERRATIONALITY
BAYESIAN GAMES
STRATEGIC BELIEF MODELS
TYPES
COALGEBRAS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a formal analysis of Douglas Hofstadter?s concept of superrationality. We start by defining superrationally justifiable actions, and study them in symmetric games. We then model the beliefs of the players, in a way that leads them to different choices than the usual assumption of rationality by restricting the range of conceivable choices. These beliefs are captured in the formal notion of type drawn from epistemic game theory. The theory of coalgebras is used to frame type spaces and to account for the existence of some of them. We find conditions that guarantee superrational outcomes.
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Viglizzo, Ignacio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
description We present a formal analysis of Douglas Hofstadter?s concept of superrationality. We start by defining superrationally justifiable actions, and study them in symmetric games. We then model the beliefs of the players, in a way that leads them to different choices than the usual assumption of rationality by restricting the range of conceivable choices. These beliefs are captured in the formal notion of type drawn from epistemic game theory. The theory of coalgebras is used to frame type spaces and to account for the existence of some of them. We find conditions that guarantee superrational outcomes.
publishDate 2019
dc.date.none.fl_str_mv 2019-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/92869
Tohmé, Fernando Abel; Viglizzo, Ignacio Dario; Superrational types; Oxford University Press; Logic Journal of the IGPL (print); 27; 6; 4-2019; 847–864
1367-0751
1368-9894
CONICET Digital
CONICET
url http://hdl.handle.net/11336/92869
identifier_str_mv Tohmé, Fernando Abel; Viglizzo, Ignacio Dario; Superrational types; Oxford University Press; Logic Journal of the IGPL (print); 27; 6; 4-2019; 847–864
1367-0751
1368-9894
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1093/jigpal/jzz007
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jigpal/article-abstract/27/6/847/5424052
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1802.06888
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083214086504448
score 13.22299