Polar caps during geomagnetic polarity reversals

Autores
Zossi, Bruno Santiago; Fagre, Mariano; Amit, Hagay; Elias, Ana Georgina
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Changes in the Earth’s magnetic field can deeply modify the polar caps and auroral zones, which are the regions of most frequent precipitation of energetic particles. The present field is characterized by a dominant dipole plus weaker multipolar components. The field varies greatly in time, with the most drastic changes being polarity reversals that take place on average every ∼200 000 yr. During a polarity transition the field magnitude may diminish to about 10 per cent of its value prior to the reversal due to a decreasing dipolar component and by becoming mostly multipolar in nature. Polar caps depend on the geomagnetic field configuration so changes in their morphology are expected as a consequence of the variation and reversal of this field. We model polar caps’ location by considering a superposition of the internal geomagnetic field and a uniform external field and then following the open field lines to the Earth’s surface. Polar caps’ location and shape for different magnetic field reversal scenarios are analysed in this work. Two polar caps near the present dipole axis intersection with the Earth’s surface prevail for a dipole decrease to a certain extent, below which the southern hemisphere polar cap moves to mid-latitudes. An axial dipole collapse gives a pair of polar caps both at mid-latitudes of the southern hemisphere, while in a dipole rotation scenario the polar caps reside at the equator. If reversals occur due to an energy cascade from the dipole to higher degrees, more than two polar caps may appear. In our energy cascade scenario, four polar caps at various latitudes of both hemispheres prevail. These results indicate that during reversals auroral zones may reach mid- and low-latitude regions, and the atmosphere may become more vulnerable to the direct effect of energetic particle precipitation. This vulnerability is particularly striking at the southern hemisphere where reversed flux patches appear on the core–mantle boundary and weak intensity characterizes the present field at the Earth’s surface.
Fil: Zossi, Bruno Santiago. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Fagre, Mariano. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Amit, Hagay. Universite de Nantes; Francia
Fil: Elias, Ana Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Materia
POLAR CAPS
GEOMAGNETIC FIELD
POLARITY REVERSAL
MAGNETOSPHERE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/106229

id CONICETDig_fe3af8380d03a819a774c0567a31d083
oai_identifier_str oai:ri.conicet.gov.ar:11336/106229
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Polar caps during geomagnetic polarity reversalsZossi, Bruno SantiagoFagre, MarianoAmit, HagayElias, Ana GeorginaPOLAR CAPSGEOMAGNETIC FIELDPOLARITY REVERSALMAGNETOSPHEREhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Changes in the Earth’s magnetic field can deeply modify the polar caps and auroral zones, which are the regions of most frequent precipitation of energetic particles. The present field is characterized by a dominant dipole plus weaker multipolar components. The field varies greatly in time, with the most drastic changes being polarity reversals that take place on average every ∼200 000 yr. During a polarity transition the field magnitude may diminish to about 10 per cent of its value prior to the reversal due to a decreasing dipolar component and by becoming mostly multipolar in nature. Polar caps depend on the geomagnetic field configuration so changes in their morphology are expected as a consequence of the variation and reversal of this field. We model polar caps’ location by considering a superposition of the internal geomagnetic field and a uniform external field and then following the open field lines to the Earth’s surface. Polar caps’ location and shape for different magnetic field reversal scenarios are analysed in this work. Two polar caps near the present dipole axis intersection with the Earth’s surface prevail for a dipole decrease to a certain extent, below which the southern hemisphere polar cap moves to mid-latitudes. An axial dipole collapse gives a pair of polar caps both at mid-latitudes of the southern hemisphere, while in a dipole rotation scenario the polar caps reside at the equator. If reversals occur due to an energy cascade from the dipole to higher degrees, more than two polar caps may appear. In our energy cascade scenario, four polar caps at various latitudes of both hemispheres prevail. These results indicate that during reversals auroral zones may reach mid- and low-latitude regions, and the atmosphere may become more vulnerable to the direct effect of energetic particle precipitation. This vulnerability is particularly striking at the southern hemisphere where reversed flux patches appear on the core–mantle boundary and weak intensity characterizes the present field at the Earth’s surface.Fil: Zossi, Bruno Santiago. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Fagre, Mariano. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Amit, Hagay. Universite de Nantes; FranciaFil: Elias, Ana Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaWiley Blackwell Publishing, Inc2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106229Zossi, Bruno Santiago; Fagre, Mariano; Amit, Hagay; Elias, Ana Georgina; Polar caps during geomagnetic polarity reversals; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 216; 2; 2-2019; 1334-13430956-540XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/gji/article/216/2/1334/5195527info:eu-repo/semantics/altIdentifier/doi/10.1093/gji/ggy494info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:26Zoai:ri.conicet.gov.ar:11336/106229instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:26.322CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Polar caps during geomagnetic polarity reversals
title Polar caps during geomagnetic polarity reversals
spellingShingle Polar caps during geomagnetic polarity reversals
Zossi, Bruno Santiago
POLAR CAPS
GEOMAGNETIC FIELD
POLARITY REVERSAL
MAGNETOSPHERE
title_short Polar caps during geomagnetic polarity reversals
title_full Polar caps during geomagnetic polarity reversals
title_fullStr Polar caps during geomagnetic polarity reversals
title_full_unstemmed Polar caps during geomagnetic polarity reversals
title_sort Polar caps during geomagnetic polarity reversals
dc.creator.none.fl_str_mv Zossi, Bruno Santiago
Fagre, Mariano
Amit, Hagay
Elias, Ana Georgina
author Zossi, Bruno Santiago
author_facet Zossi, Bruno Santiago
Fagre, Mariano
Amit, Hagay
Elias, Ana Georgina
author_role author
author2 Fagre, Mariano
Amit, Hagay
Elias, Ana Georgina
author2_role author
author
author
dc.subject.none.fl_str_mv POLAR CAPS
GEOMAGNETIC FIELD
POLARITY REVERSAL
MAGNETOSPHERE
topic POLAR CAPS
GEOMAGNETIC FIELD
POLARITY REVERSAL
MAGNETOSPHERE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Changes in the Earth’s magnetic field can deeply modify the polar caps and auroral zones, which are the regions of most frequent precipitation of energetic particles. The present field is characterized by a dominant dipole plus weaker multipolar components. The field varies greatly in time, with the most drastic changes being polarity reversals that take place on average every ∼200 000 yr. During a polarity transition the field magnitude may diminish to about 10 per cent of its value prior to the reversal due to a decreasing dipolar component and by becoming mostly multipolar in nature. Polar caps depend on the geomagnetic field configuration so changes in their morphology are expected as a consequence of the variation and reversal of this field. We model polar caps’ location by considering a superposition of the internal geomagnetic field and a uniform external field and then following the open field lines to the Earth’s surface. Polar caps’ location and shape for different magnetic field reversal scenarios are analysed in this work. Two polar caps near the present dipole axis intersection with the Earth’s surface prevail for a dipole decrease to a certain extent, below which the southern hemisphere polar cap moves to mid-latitudes. An axial dipole collapse gives a pair of polar caps both at mid-latitudes of the southern hemisphere, while in a dipole rotation scenario the polar caps reside at the equator. If reversals occur due to an energy cascade from the dipole to higher degrees, more than two polar caps may appear. In our energy cascade scenario, four polar caps at various latitudes of both hemispheres prevail. These results indicate that during reversals auroral zones may reach mid- and low-latitude regions, and the atmosphere may become more vulnerable to the direct effect of energetic particle precipitation. This vulnerability is particularly striking at the southern hemisphere where reversed flux patches appear on the core–mantle boundary and weak intensity characterizes the present field at the Earth’s surface.
Fil: Zossi, Bruno Santiago. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Fagre, Mariano. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Amit, Hagay. Universite de Nantes; Francia
Fil: Elias, Ana Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
description Changes in the Earth’s magnetic field can deeply modify the polar caps and auroral zones, which are the regions of most frequent precipitation of energetic particles. The present field is characterized by a dominant dipole plus weaker multipolar components. The field varies greatly in time, with the most drastic changes being polarity reversals that take place on average every ∼200 000 yr. During a polarity transition the field magnitude may diminish to about 10 per cent of its value prior to the reversal due to a decreasing dipolar component and by becoming mostly multipolar in nature. Polar caps depend on the geomagnetic field configuration so changes in their morphology are expected as a consequence of the variation and reversal of this field. We model polar caps’ location by considering a superposition of the internal geomagnetic field and a uniform external field and then following the open field lines to the Earth’s surface. Polar caps’ location and shape for different magnetic field reversal scenarios are analysed in this work. Two polar caps near the present dipole axis intersection with the Earth’s surface prevail for a dipole decrease to a certain extent, below which the southern hemisphere polar cap moves to mid-latitudes. An axial dipole collapse gives a pair of polar caps both at mid-latitudes of the southern hemisphere, while in a dipole rotation scenario the polar caps reside at the equator. If reversals occur due to an energy cascade from the dipole to higher degrees, more than two polar caps may appear. In our energy cascade scenario, four polar caps at various latitudes of both hemispheres prevail. These results indicate that during reversals auroral zones may reach mid- and low-latitude regions, and the atmosphere may become more vulnerable to the direct effect of energetic particle precipitation. This vulnerability is particularly striking at the southern hemisphere where reversed flux patches appear on the core–mantle boundary and weak intensity characterizes the present field at the Earth’s surface.
publishDate 2019
dc.date.none.fl_str_mv 2019-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/106229
Zossi, Bruno Santiago; Fagre, Mariano; Amit, Hagay; Elias, Ana Georgina; Polar caps during geomagnetic polarity reversals; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 216; 2; 2-2019; 1334-1343
0956-540X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/106229
identifier_str_mv Zossi, Bruno Santiago; Fagre, Mariano; Amit, Hagay; Elias, Ana Georgina; Polar caps during geomagnetic polarity reversals; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 216; 2; 2-2019; 1334-1343
0956-540X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/gji/article/216/2/1334/5195527
info:eu-repo/semantics/altIdentifier/doi/10.1093/gji/ggy494
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613336711299072
score 13.070432