Combinatorial and modular solutions of some sequences with links to certain conformal map
- Autores
- Panzone, Pablo Andres
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- If fn is a free parameter, we give a combinatorial closed form solution of the recursion (n + 1)2un+1 − fnun − n 2un−1 = 0, n ≥ 1, and a related generating function. This is used to give a solution to the Apéry type sequence rnn3 + rn−1nαn3 −3α2n+α+ 2θon − θo+ rn−2(n − 1)3 = 0, n ≥ 2, for certain parameters α, θ. We show from another viewpoint two independent solutions of the last recursion related to certain modular forms associated with a problem of conformal mapping: Let f(τ) be a conformal map of a zero-angle hyperbolic quadrangle to an open half plane with values 0, ρ, 1, ∞ (0 < ρ < 1) at the cusps and define t = t(τ) := 1ρf(τ)f(τ)−ρ(τ)−1. Then the function E(τ) = 12πif0(τ)f(τ)11 −f(τ)ρ is a solution, as a generating function in the variable t, of the above recurrence. In other words, E(τ) = r0 +r1t+r2t 2 +. . . , where r0 = 1, r1 = −θ, α = 2− 4ρ.
Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
SEQUENCES
CONFORMAL MAPPING
MODULAR SOLUTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/111712
Ver los metadatos del registro completo
| id |
CONICETDig_fde19c3fcfa8382b4699cbfee0127789 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/111712 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Combinatorial and modular solutions of some sequences with links to certain conformal mapPanzone, Pablo AndresSEQUENCESCONFORMAL MAPPINGMODULAR SOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1If fn is a free parameter, we give a combinatorial closed form solution of the recursion (n + 1)2un+1 − fnun − n 2un−1 = 0, n ≥ 1, and a related generating function. This is used to give a solution to the Apéry type sequence rnn3 + rn−1nαn3 −3α2n+α+ 2θon − θo+ rn−2(n − 1)3 = 0, n ≥ 2, for certain parameters α, θ. We show from another viewpoint two independent solutions of the last recursion related to certain modular forms associated with a problem of conformal mapping: Let f(τ) be a conformal map of a zero-angle hyperbolic quadrangle to an open half plane with values 0, ρ, 1, ∞ (0 < ρ < 1) at the cusps and define t = t(τ) := 1ρf(τ)f(τ)−ρ(τ)−1. Then the function E(τ) = 12πif0(τ)f(τ)11 −f(τ)ρ is a solution, as a generating function in the variable t, of the above recurrence. In other words, E(τ) = r0 +r1t+r2t 2 +. . . , where r0 = 1, r1 = −θ, α = 2− 4ρ.Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaUnión Matemática Argentina2018-06-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111712Panzone, Pablo Andres; Combinatorial and modular solutions of some sequences with links to certain conformal map; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 59; 2; 06-6-2018; 389–4140041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v59n2a09info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.v59n2a09info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v59n2/v59n2a09.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T08:59:19Zoai:ri.conicet.gov.ar:11336/111712instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 08:59:19.267CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Combinatorial and modular solutions of some sequences with links to certain conformal map |
| title |
Combinatorial and modular solutions of some sequences with links to certain conformal map |
| spellingShingle |
Combinatorial and modular solutions of some sequences with links to certain conformal map Panzone, Pablo Andres SEQUENCES CONFORMAL MAPPING MODULAR SOLUTIONS |
| title_short |
Combinatorial and modular solutions of some sequences with links to certain conformal map |
| title_full |
Combinatorial and modular solutions of some sequences with links to certain conformal map |
| title_fullStr |
Combinatorial and modular solutions of some sequences with links to certain conformal map |
| title_full_unstemmed |
Combinatorial and modular solutions of some sequences with links to certain conformal map |
| title_sort |
Combinatorial and modular solutions of some sequences with links to certain conformal map |
| dc.creator.none.fl_str_mv |
Panzone, Pablo Andres |
| author |
Panzone, Pablo Andres |
| author_facet |
Panzone, Pablo Andres |
| author_role |
author |
| dc.subject.none.fl_str_mv |
SEQUENCES CONFORMAL MAPPING MODULAR SOLUTIONS |
| topic |
SEQUENCES CONFORMAL MAPPING MODULAR SOLUTIONS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
If fn is a free parameter, we give a combinatorial closed form solution of the recursion (n + 1)2un+1 − fnun − n 2un−1 = 0, n ≥ 1, and a related generating function. This is used to give a solution to the Apéry type sequence rnn3 + rn−1nαn3 −3α2n+α+ 2θon − θo+ rn−2(n − 1)3 = 0, n ≥ 2, for certain parameters α, θ. We show from another viewpoint two independent solutions of the last recursion related to certain modular forms associated with a problem of conformal mapping: Let f(τ) be a conformal map of a zero-angle hyperbolic quadrangle to an open half plane with values 0, ρ, 1, ∞ (0 < ρ < 1) at the cusps and define t = t(τ) := 1ρf(τ)f(τ)−ρ(τ)−1. Then the function E(τ) = 12πif0(τ)f(τ)11 −f(τ)ρ is a solution, as a generating function in the variable t, of the above recurrence. In other words, E(τ) = r0 +r1t+r2t 2 +. . . , where r0 = 1, r1 = −θ, α = 2− 4ρ. Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
| description |
If fn is a free parameter, we give a combinatorial closed form solution of the recursion (n + 1)2un+1 − fnun − n 2un−1 = 0, n ≥ 1, and a related generating function. This is used to give a solution to the Apéry type sequence rnn3 + rn−1nαn3 −3α2n+α+ 2θon − θo+ rn−2(n − 1)3 = 0, n ≥ 2, for certain parameters α, θ. We show from another viewpoint two independent solutions of the last recursion related to certain modular forms associated with a problem of conformal mapping: Let f(τ) be a conformal map of a zero-angle hyperbolic quadrangle to an open half plane with values 0, ρ, 1, ∞ (0 < ρ < 1) at the cusps and define t = t(τ) := 1ρf(τ)f(τ)−ρ(τ)−1. Then the function E(τ) = 12πif0(τ)f(τ)11 −f(τ)ρ is a solution, as a generating function in the variable t, of the above recurrence. In other words, E(τ) = r0 +r1t+r2t 2 +. . . , where r0 = 1, r1 = −θ, α = 2− 4ρ. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-06-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/111712 Panzone, Pablo Andres; Combinatorial and modular solutions of some sequences with links to certain conformal map; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 59; 2; 06-6-2018; 389–414 0041-6932 1669-9637 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/111712 |
| identifier_str_mv |
Panzone, Pablo Andres; Combinatorial and modular solutions of some sequences with links to certain conformal map; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 59; 2; 06-6-2018; 389–414 0041-6932 1669-9637 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v59n2a09 info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.v59n2a09 info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v59n2/v59n2a09.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
| publisher.none.fl_str_mv |
Unión Matemática Argentina |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1850505151735922688 |
| score |
13.044783 |