Combinatorial and modular solutions of some sequences with links to certain conformal map

Autores
Panzone, Pablo Andres
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
If fn is a free parameter, we give a combinatorial closed form solution of the recursion (n + 1)2un+1 − fnun − n 2un−1 = 0, n ≥ 1, and a related generating function. This is used to give a solution to the Apéry type sequence rnn3 + rn−1nαn3 −3α2n+α+ 2θon − θo+ rn−2(n − 1)3 = 0, n ≥ 2, for certain parameters α, θ. We show from another viewpoint two independent solutions of the last recursion related to certain modular forms associated with a problem of conformal mapping: Let f(τ) be a conformal map of a zero-angle hyperbolic quadrangle to an open half plane with values 0, ρ, 1, ∞ (0 < ρ < 1) at the cusps and define t = t(τ) := 1ρf(τ)f(τ)−ρ(τ)−1. Then the function E(τ) = 12πif0(τ)f(τ)11 −f(τ)ρ is a solution, as a generating function in the variable t, of the above recurrence. In other words, E(τ) = r0 +r1t+r2t 2 +. . . , where r0 = 1, r1 = −θ, α = 2− 4ρ.
Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Materia
SEQUENCES
CONFORMAL MAPPING
MODULAR SOLUTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/111712

id CONICETDig_fde19c3fcfa8382b4699cbfee0127789
oai_identifier_str oai:ri.conicet.gov.ar:11336/111712
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Combinatorial and modular solutions of some sequences with links to certain conformal mapPanzone, Pablo AndresSEQUENCESCONFORMAL MAPPINGMODULAR SOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1If fn is a free parameter, we give a combinatorial closed form solution of the recursion (n + 1)2un+1 − fnun − n 2un−1 = 0, n ≥ 1, and a related generating function. This is used to give a solution to the Apéry type sequence rnn3 + rn−1nαn3 −3α2n+α+ 2θon − θo+ rn−2(n − 1)3 = 0, n ≥ 2, for certain parameters α, θ. We show from another viewpoint two independent solutions of the last recursion related to certain modular forms associated with a problem of conformal mapping: Let f(τ) be a conformal map of a zero-angle hyperbolic quadrangle to an open half plane with values 0, ρ, 1, ∞ (0 < ρ < 1) at the cusps and define t = t(τ) := 1ρf(τ)f(τ)−ρ(τ)−1. Then the function E(τ) = 12πif0(τ)f(τ)11 −f(τ)ρ is a solution, as a generating function in the variable t, of the above recurrence. In other words, E(τ) = r0 +r1t+r2t 2 +. . . , where r0 = 1, r1 = −θ, α = 2− 4ρ.Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaUnión Matemática Argentina2018-06-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111712Panzone, Pablo Andres; Combinatorial and modular solutions of some sequences with links to certain conformal map; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 59; 2; 06-6-2018; 389–4140041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v59n2a09info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.v59n2a09info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v59n2/v59n2a09.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T08:59:19Zoai:ri.conicet.gov.ar:11336/111712instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 08:59:19.267CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Combinatorial and modular solutions of some sequences with links to certain conformal map
title Combinatorial and modular solutions of some sequences with links to certain conformal map
spellingShingle Combinatorial and modular solutions of some sequences with links to certain conformal map
Panzone, Pablo Andres
SEQUENCES
CONFORMAL MAPPING
MODULAR SOLUTIONS
title_short Combinatorial and modular solutions of some sequences with links to certain conformal map
title_full Combinatorial and modular solutions of some sequences with links to certain conformal map
title_fullStr Combinatorial and modular solutions of some sequences with links to certain conformal map
title_full_unstemmed Combinatorial and modular solutions of some sequences with links to certain conformal map
title_sort Combinatorial and modular solutions of some sequences with links to certain conformal map
dc.creator.none.fl_str_mv Panzone, Pablo Andres
author Panzone, Pablo Andres
author_facet Panzone, Pablo Andres
author_role author
dc.subject.none.fl_str_mv SEQUENCES
CONFORMAL MAPPING
MODULAR SOLUTIONS
topic SEQUENCES
CONFORMAL MAPPING
MODULAR SOLUTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv If fn is a free parameter, we give a combinatorial closed form solution of the recursion (n + 1)2un+1 − fnun − n 2un−1 = 0, n ≥ 1, and a related generating function. This is used to give a solution to the Apéry type sequence rnn3 + rn−1nαn3 −3α2n+α+ 2θon − θo+ rn−2(n − 1)3 = 0, n ≥ 2, for certain parameters α, θ. We show from another viewpoint two independent solutions of the last recursion related to certain modular forms associated with a problem of conformal mapping: Let f(τ) be a conformal map of a zero-angle hyperbolic quadrangle to an open half plane with values 0, ρ, 1, ∞ (0 < ρ < 1) at the cusps and define t = t(τ) := 1ρf(τ)f(τ)−ρ(τ)−1. Then the function E(τ) = 12πif0(τ)f(τ)11 −f(τ)ρ is a solution, as a generating function in the variable t, of the above recurrence. In other words, E(τ) = r0 +r1t+r2t 2 +. . . , where r0 = 1, r1 = −θ, α = 2− 4ρ.
Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
description If fn is a free parameter, we give a combinatorial closed form solution of the recursion (n + 1)2un+1 − fnun − n 2un−1 = 0, n ≥ 1, and a related generating function. This is used to give a solution to the Apéry type sequence rnn3 + rn−1nαn3 −3α2n+α+ 2θon − θo+ rn−2(n − 1)3 = 0, n ≥ 2, for certain parameters α, θ. We show from another viewpoint two independent solutions of the last recursion related to certain modular forms associated with a problem of conformal mapping: Let f(τ) be a conformal map of a zero-angle hyperbolic quadrangle to an open half plane with values 0, ρ, 1, ∞ (0 < ρ < 1) at the cusps and define t = t(τ) := 1ρf(τ)f(τ)−ρ(τ)−1. Then the function E(τ) = 12πif0(τ)f(τ)11 −f(τ)ρ is a solution, as a generating function in the variable t, of the above recurrence. In other words, E(τ) = r0 +r1t+r2t 2 +. . . , where r0 = 1, r1 = −θ, α = 2− 4ρ.
publishDate 2018
dc.date.none.fl_str_mv 2018-06-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/111712
Panzone, Pablo Andres; Combinatorial and modular solutions of some sequences with links to certain conformal map; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 59; 2; 06-6-2018; 389–414
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/111712
identifier_str_mv Panzone, Pablo Andres; Combinatorial and modular solutions of some sequences with links to certain conformal map; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 59; 2; 06-6-2018; 389–414
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v59n2a09
info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.v59n2a09
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v59n2/v59n2a09.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1850505151735922688
score 13.044783