Disk one-point function for a family of non-rational conformal theories
- Autores
- Babaro, Juan Pablo; Giribet, Gaston Enrique
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider an infinite family of non-rational conformal field theories in the presence of a conformal boundary. These theories, which have been recently proposed in [1], are parameterized by two real numbers (b,m) in such a way that the corresponding central charges c (b,m) are given by c (b,m) = 3+6(b+b -1(1-m)) 2. For the disk geometry, we explicitly compute the expectation value of a bulk vertex operator in the case m ∈ ℤ, such that the result reduces to the Liouville one-point function when m = 0. We perform the calculation of the disk one-point function in two different ways, obtaining results in perfect agreement, and giving the details of both the path integral and the free field derivations. © SISSA 2010.
Fil: Babaro, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
CONFORMAL AND W SYMMETRY
CONFORMAL FIELD MODELS IN STRING THEORY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/56936
Ver los metadatos del registro completo
| id |
CONICETDig_f6a7febc993de7b5b347fd52dbfb1775 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/56936 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Disk one-point function for a family of non-rational conformal theoriesBabaro, Juan PabloGiribet, Gaston EnriqueCONFORMAL AND W SYMMETRYCONFORMAL FIELD MODELS IN STRING THEORYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider an infinite family of non-rational conformal field theories in the presence of a conformal boundary. These theories, which have been recently proposed in [1], are parameterized by two real numbers (b,m) in such a way that the corresponding central charges c (b,m) are given by c (b,m) = 3+6(b+b -1(1-m)) 2. For the disk geometry, we explicitly compute the expectation value of a bulk vertex operator in the case m ∈ ℤ, such that the result reduces to the Liouville one-point function when m = 0. We perform the calculation of the disk one-point function in two different ways, obtaining results in perfect agreement, and giving the details of both the path integral and the free field derivations. © SISSA 2010.Fil: Babaro, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaSpringer2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56936Babaro, Juan Pablo; Giribet, Gaston Enrique; Disk one-point function for a family of non-rational conformal theories; Springer; Journal of High Energy Physics; 2010; 77; 9-2010; 1-291126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP09(2010)077info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP09(2010)077info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T08:56:15Zoai:ri.conicet.gov.ar:11336/56936instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 08:56:16.047CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Disk one-point function for a family of non-rational conformal theories |
| title |
Disk one-point function for a family of non-rational conformal theories |
| spellingShingle |
Disk one-point function for a family of non-rational conformal theories Babaro, Juan Pablo CONFORMAL AND W SYMMETRY CONFORMAL FIELD MODELS IN STRING THEORY |
| title_short |
Disk one-point function for a family of non-rational conformal theories |
| title_full |
Disk one-point function for a family of non-rational conformal theories |
| title_fullStr |
Disk one-point function for a family of non-rational conformal theories |
| title_full_unstemmed |
Disk one-point function for a family of non-rational conformal theories |
| title_sort |
Disk one-point function for a family of non-rational conformal theories |
| dc.creator.none.fl_str_mv |
Babaro, Juan Pablo Giribet, Gaston Enrique |
| author |
Babaro, Juan Pablo |
| author_facet |
Babaro, Juan Pablo Giribet, Gaston Enrique |
| author_role |
author |
| author2 |
Giribet, Gaston Enrique |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
CONFORMAL AND W SYMMETRY CONFORMAL FIELD MODELS IN STRING THEORY |
| topic |
CONFORMAL AND W SYMMETRY CONFORMAL FIELD MODELS IN STRING THEORY |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We consider an infinite family of non-rational conformal field theories in the presence of a conformal boundary. These theories, which have been recently proposed in [1], are parameterized by two real numbers (b,m) in such a way that the corresponding central charges c (b,m) are given by c (b,m) = 3+6(b+b -1(1-m)) 2. For the disk geometry, we explicitly compute the expectation value of a bulk vertex operator in the case m ∈ ℤ, such that the result reduces to the Liouville one-point function when m = 0. We perform the calculation of the disk one-point function in two different ways, obtaining results in perfect agreement, and giving the details of both the path integral and the free field derivations. © SISSA 2010. Fil: Babaro, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
| description |
We consider an infinite family of non-rational conformal field theories in the presence of a conformal boundary. These theories, which have been recently proposed in [1], are parameterized by two real numbers (b,m) in such a way that the corresponding central charges c (b,m) are given by c (b,m) = 3+6(b+b -1(1-m)) 2. For the disk geometry, we explicitly compute the expectation value of a bulk vertex operator in the case m ∈ ℤ, such that the result reduces to the Liouville one-point function when m = 0. We perform the calculation of the disk one-point function in two different ways, obtaining results in perfect agreement, and giving the details of both the path integral and the free field derivations. © SISSA 2010. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/56936 Babaro, Juan Pablo; Giribet, Gaston Enrique; Disk one-point function for a family of non-rational conformal theories; Springer; Journal of High Energy Physics; 2010; 77; 9-2010; 1-29 1126-6708 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/56936 |
| identifier_str_mv |
Babaro, Juan Pablo; Giribet, Gaston Enrique; Disk one-point function for a family of non-rational conformal theories; Springer; Journal of High Energy Physics; 2010; 77; 9-2010; 1-29 1126-6708 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP09(2010)077 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP09(2010)077 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1849873144351817728 |
| score |
13.011256 |