Disk one-point function for a family of non-rational conformal theories

Autores
Babaro, Juan Pablo; Giribet, Gaston Enrique
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider an infinite family of non-rational conformal field theories in the presence of a conformal boundary. These theories, which have been recently proposed in [1], are parameterized by two real numbers (b,m) in such a way that the corresponding central charges c (b,m) are given by c (b,m) = 3+6(b+b -1(1-m)) 2. For the disk geometry, we explicitly compute the expectation value of a bulk vertex operator in the case m ∈ ℤ, such that the result reduces to the Liouville one-point function when m = 0. We perform the calculation of the disk one-point function in two different ways, obtaining results in perfect agreement, and giving the details of both the path integral and the free field derivations. © SISSA 2010.
Fil: Babaro, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
CONFORMAL AND W SYMMETRY
CONFORMAL FIELD MODELS IN STRING THEORY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/56936

id CONICETDig_f6a7febc993de7b5b347fd52dbfb1775
oai_identifier_str oai:ri.conicet.gov.ar:11336/56936
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Disk one-point function for a family of non-rational conformal theoriesBabaro, Juan PabloGiribet, Gaston EnriqueCONFORMAL AND W SYMMETRYCONFORMAL FIELD MODELS IN STRING THEORYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider an infinite family of non-rational conformal field theories in the presence of a conformal boundary. These theories, which have been recently proposed in [1], are parameterized by two real numbers (b,m) in such a way that the corresponding central charges c (b,m) are given by c (b,m) = 3+6(b+b -1(1-m)) 2. For the disk geometry, we explicitly compute the expectation value of a bulk vertex operator in the case m ∈ ℤ, such that the result reduces to the Liouville one-point function when m = 0. We perform the calculation of the disk one-point function in two different ways, obtaining results in perfect agreement, and giving the details of both the path integral and the free field derivations. © SISSA 2010.Fil: Babaro, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaSpringer2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56936Babaro, Juan Pablo; Giribet, Gaston Enrique; Disk one-point function for a family of non-rational conformal theories; Springer; Journal of High Energy Physics; 2010; 77; 9-2010; 1-291126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP09(2010)077info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP09(2010)077info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:23Zoai:ri.conicet.gov.ar:11336/56936instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:23.78CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Disk one-point function for a family of non-rational conformal theories
title Disk one-point function for a family of non-rational conformal theories
spellingShingle Disk one-point function for a family of non-rational conformal theories
Babaro, Juan Pablo
CONFORMAL AND W SYMMETRY
CONFORMAL FIELD MODELS IN STRING THEORY
title_short Disk one-point function for a family of non-rational conformal theories
title_full Disk one-point function for a family of non-rational conformal theories
title_fullStr Disk one-point function for a family of non-rational conformal theories
title_full_unstemmed Disk one-point function for a family of non-rational conformal theories
title_sort Disk one-point function for a family of non-rational conformal theories
dc.creator.none.fl_str_mv Babaro, Juan Pablo
Giribet, Gaston Enrique
author Babaro, Juan Pablo
author_facet Babaro, Juan Pablo
Giribet, Gaston Enrique
author_role author
author2 Giribet, Gaston Enrique
author2_role author
dc.subject.none.fl_str_mv CONFORMAL AND W SYMMETRY
CONFORMAL FIELD MODELS IN STRING THEORY
topic CONFORMAL AND W SYMMETRY
CONFORMAL FIELD MODELS IN STRING THEORY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider an infinite family of non-rational conformal field theories in the presence of a conformal boundary. These theories, which have been recently proposed in [1], are parameterized by two real numbers (b,m) in such a way that the corresponding central charges c (b,m) are given by c (b,m) = 3+6(b+b -1(1-m)) 2. For the disk geometry, we explicitly compute the expectation value of a bulk vertex operator in the case m ∈ ℤ, such that the result reduces to the Liouville one-point function when m = 0. We perform the calculation of the disk one-point function in two different ways, obtaining results in perfect agreement, and giving the details of both the path integral and the free field derivations. © SISSA 2010.
Fil: Babaro, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description We consider an infinite family of non-rational conformal field theories in the presence of a conformal boundary. These theories, which have been recently proposed in [1], are parameterized by two real numbers (b,m) in such a way that the corresponding central charges c (b,m) are given by c (b,m) = 3+6(b+b -1(1-m)) 2. For the disk geometry, we explicitly compute the expectation value of a bulk vertex operator in the case m ∈ ℤ, such that the result reduces to the Liouville one-point function when m = 0. We perform the calculation of the disk one-point function in two different ways, obtaining results in perfect agreement, and giving the details of both the path integral and the free field derivations. © SISSA 2010.
publishDate 2010
dc.date.none.fl_str_mv 2010-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/56936
Babaro, Juan Pablo; Giribet, Gaston Enrique; Disk one-point function for a family of non-rational conformal theories; Springer; Journal of High Energy Physics; 2010; 77; 9-2010; 1-29
1126-6708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/56936
identifier_str_mv Babaro, Juan Pablo; Giribet, Gaston Enrique; Disk one-point function for a family of non-rational conformal theories; Springer; Journal of High Energy Physics; 2010; 77; 9-2010; 1-29
1126-6708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP09(2010)077
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP09(2010)077
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980768224116736
score 12.993085