A consistent total Lagrangian finite element for composite closed section thin walled beams
- Autores
- Saravia, César Martín; Machado, Sebastián Pablo; Cortínez, Víctor Hugo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work presents a consistent geometrically exact finite element formulation of the thin-walled anisotropic beam theory. The present formulation is thought to address problems of composite beams with nonlinear behavior. The constitutive formulation is based on the relations of composite laminates and thus the cross sectional stiffness matrix is obtained analytically. The variational formulation is written in terms of generalized strains, which are parametrized with the director field and its derivatives. The generalized strains and generalized beam forces are obtained by introducing a transformation that maps generalized components into physical components. A consistent tangent stiffness matrix is obtained by parametrizing the finite rotations with the total rotation vector; its derivation is greatly simplified by obtention of the derivatives of the director field via interpolation of nodal triads. Several numerical examples are presented to show the accuracy of the formulation and also its frame invariance and path independence.
Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Investigación en Multifísica Aplicada. - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Grupo de Investigación en Multifísica Aplicada; Argentina
Fil: Cortínez, Víctor Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina - Materia
-
COMPOSITE BEAMS
FINITE ELEMENTS
FINITE ROTATIONS
THIN-WALLED BEAMS
OPTIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/195801
Ver los metadatos del registro completo
id |
CONICETDig_fdada1d1bb2d62eb9f7057d1ab6782f8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/195801 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A consistent total Lagrangian finite element for composite closed section thin walled beamsSaravia, César MartínMachado, Sebastián PabloCortínez, Víctor HugoCOMPOSITE BEAMSFINITE ELEMENTSFINITE ROTATIONSTHIN-WALLED BEAMSOPTIMIZATIONhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This work presents a consistent geometrically exact finite element formulation of the thin-walled anisotropic beam theory. The present formulation is thought to address problems of composite beams with nonlinear behavior. The constitutive formulation is based on the relations of composite laminates and thus the cross sectional stiffness matrix is obtained analytically. The variational formulation is written in terms of generalized strains, which are parametrized with the director field and its derivatives. The generalized strains and generalized beam forces are obtained by introducing a transformation that maps generalized components into physical components. A consistent tangent stiffness matrix is obtained by parametrizing the finite rotations with the total rotation vector; its derivation is greatly simplified by obtention of the derivatives of the director field via interpolation of nodal triads. Several numerical examples are presented to show the accuracy of the formulation and also its frame invariance and path independence.Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaFil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Investigación en Multifísica Aplicada. - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Grupo de Investigación en Multifísica Aplicada; ArgentinaFil: Cortínez, Víctor Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaElsevier2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/195801Saravia, César Martín; Machado, Sebastián Pablo; Cortínez, Víctor Hugo; A consistent total Lagrangian finite element for composite closed section thin walled beams; Elsevier; Thin-Walled Structures; 52; 3-2012; 102-1160263-8231CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S026382311100262X?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.tws.2011.11.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:35:06Zoai:ri.conicet.gov.ar:11336/195801instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:35:06.404CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A consistent total Lagrangian finite element for composite closed section thin walled beams |
title |
A consistent total Lagrangian finite element for composite closed section thin walled beams |
spellingShingle |
A consistent total Lagrangian finite element for composite closed section thin walled beams Saravia, César Martín COMPOSITE BEAMS FINITE ELEMENTS FINITE ROTATIONS THIN-WALLED BEAMS OPTIMIZATION |
title_short |
A consistent total Lagrangian finite element for composite closed section thin walled beams |
title_full |
A consistent total Lagrangian finite element for composite closed section thin walled beams |
title_fullStr |
A consistent total Lagrangian finite element for composite closed section thin walled beams |
title_full_unstemmed |
A consistent total Lagrangian finite element for composite closed section thin walled beams |
title_sort |
A consistent total Lagrangian finite element for composite closed section thin walled beams |
dc.creator.none.fl_str_mv |
Saravia, César Martín Machado, Sebastián Pablo Cortínez, Víctor Hugo |
author |
Saravia, César Martín |
author_facet |
Saravia, César Martín Machado, Sebastián Pablo Cortínez, Víctor Hugo |
author_role |
author |
author2 |
Machado, Sebastián Pablo Cortínez, Víctor Hugo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
COMPOSITE BEAMS FINITE ELEMENTS FINITE ROTATIONS THIN-WALLED BEAMS OPTIMIZATION |
topic |
COMPOSITE BEAMS FINITE ELEMENTS FINITE ROTATIONS THIN-WALLED BEAMS OPTIMIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This work presents a consistent geometrically exact finite element formulation of the thin-walled anisotropic beam theory. The present formulation is thought to address problems of composite beams with nonlinear behavior. The constitutive formulation is based on the relations of composite laminates and thus the cross sectional stiffness matrix is obtained analytically. The variational formulation is written in terms of generalized strains, which are parametrized with the director field and its derivatives. The generalized strains and generalized beam forces are obtained by introducing a transformation that maps generalized components into physical components. A consistent tangent stiffness matrix is obtained by parametrizing the finite rotations with the total rotation vector; its derivation is greatly simplified by obtention of the derivatives of the director field via interpolation of nodal triads. Several numerical examples are presented to show the accuracy of the formulation and also its frame invariance and path independence. Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Investigación en Multifísica Aplicada. - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Grupo de Investigación en Multifísica Aplicada; Argentina Fil: Cortínez, Víctor Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina |
description |
This work presents a consistent geometrically exact finite element formulation of the thin-walled anisotropic beam theory. The present formulation is thought to address problems of composite beams with nonlinear behavior. The constitutive formulation is based on the relations of composite laminates and thus the cross sectional stiffness matrix is obtained analytically. The variational formulation is written in terms of generalized strains, which are parametrized with the director field and its derivatives. The generalized strains and generalized beam forces are obtained by introducing a transformation that maps generalized components into physical components. A consistent tangent stiffness matrix is obtained by parametrizing the finite rotations with the total rotation vector; its derivation is greatly simplified by obtention of the derivatives of the director field via interpolation of nodal triads. Several numerical examples are presented to show the accuracy of the formulation and also its frame invariance and path independence. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/195801 Saravia, César Martín; Machado, Sebastián Pablo; Cortínez, Víctor Hugo; A consistent total Lagrangian finite element for composite closed section thin walled beams; Elsevier; Thin-Walled Structures; 52; 3-2012; 102-116 0263-8231 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/195801 |
identifier_str_mv |
Saravia, César Martín; Machado, Sebastián Pablo; Cortínez, Víctor Hugo; A consistent total Lagrangian finite element for composite closed section thin walled beams; Elsevier; Thin-Walled Structures; 52; 3-2012; 102-116 0263-8231 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S026382311100262X?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tws.2011.11.007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614368614940672 |
score |
13.070432 |