A consistent total Lagrangian finite element for composite closed section thin walled beams

Autores
Saravia, César Martín; Machado, Sebastián Pablo; Cortínez, Víctor Hugo
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work presents a consistent geometrically exact finite element formulation of the thin-walled anisotropic beam theory. The present formulation is thought to address problems of composite beams with nonlinear behavior. The constitutive formulation is based on the relations of composite laminates and thus the cross sectional stiffness matrix is obtained analytically. The variational formulation is written in terms of generalized strains, which are parametrized with the director field and its derivatives. The generalized strains and generalized beam forces are obtained by introducing a transformation that maps generalized components into physical components. A consistent tangent stiffness matrix is obtained by parametrizing the finite rotations with the total rotation vector; its derivation is greatly simplified by obtention of the derivatives of the director field via interpolation of nodal triads. Several numerical examples are presented to show the accuracy of the formulation and also its frame invariance and path independence.
Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Investigación en Multifísica Aplicada. - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Grupo de Investigación en Multifísica Aplicada; Argentina
Fil: Cortínez, Víctor Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Materia
COMPOSITE BEAMS
FINITE ELEMENTS
FINITE ROTATIONS
THIN-WALLED BEAMS
OPTIMIZATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/195801

id CONICETDig_fdada1d1bb2d62eb9f7057d1ab6782f8
oai_identifier_str oai:ri.conicet.gov.ar:11336/195801
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A consistent total Lagrangian finite element for composite closed section thin walled beamsSaravia, César MartínMachado, Sebastián PabloCortínez, Víctor HugoCOMPOSITE BEAMSFINITE ELEMENTSFINITE ROTATIONSTHIN-WALLED BEAMSOPTIMIZATIONhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This work presents a consistent geometrically exact finite element formulation of the thin-walled anisotropic beam theory. The present formulation is thought to address problems of composite beams with nonlinear behavior. The constitutive formulation is based on the relations of composite laminates and thus the cross sectional stiffness matrix is obtained analytically. The variational formulation is written in terms of generalized strains, which are parametrized with the director field and its derivatives. The generalized strains and generalized beam forces are obtained by introducing a transformation that maps generalized components into physical components. A consistent tangent stiffness matrix is obtained by parametrizing the finite rotations with the total rotation vector; its derivation is greatly simplified by obtention of the derivatives of the director field via interpolation of nodal triads. Several numerical examples are presented to show the accuracy of the formulation and also its frame invariance and path independence.Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaFil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Investigación en Multifísica Aplicada. - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Grupo de Investigación en Multifísica Aplicada; ArgentinaFil: Cortínez, Víctor Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaElsevier2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/195801Saravia, César Martín; Machado, Sebastián Pablo; Cortínez, Víctor Hugo; A consistent total Lagrangian finite element for composite closed section thin walled beams; Elsevier; Thin-Walled Structures; 52; 3-2012; 102-1160263-8231CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S026382311100262X?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.tws.2011.11.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:35:06Zoai:ri.conicet.gov.ar:11336/195801instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:35:06.404CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A consistent total Lagrangian finite element for composite closed section thin walled beams
title A consistent total Lagrangian finite element for composite closed section thin walled beams
spellingShingle A consistent total Lagrangian finite element for composite closed section thin walled beams
Saravia, César Martín
COMPOSITE BEAMS
FINITE ELEMENTS
FINITE ROTATIONS
THIN-WALLED BEAMS
OPTIMIZATION
title_short A consistent total Lagrangian finite element for composite closed section thin walled beams
title_full A consistent total Lagrangian finite element for composite closed section thin walled beams
title_fullStr A consistent total Lagrangian finite element for composite closed section thin walled beams
title_full_unstemmed A consistent total Lagrangian finite element for composite closed section thin walled beams
title_sort A consistent total Lagrangian finite element for composite closed section thin walled beams
dc.creator.none.fl_str_mv Saravia, César Martín
Machado, Sebastián Pablo
Cortínez, Víctor Hugo
author Saravia, César Martín
author_facet Saravia, César Martín
Machado, Sebastián Pablo
Cortínez, Víctor Hugo
author_role author
author2 Machado, Sebastián Pablo
Cortínez, Víctor Hugo
author2_role author
author
dc.subject.none.fl_str_mv COMPOSITE BEAMS
FINITE ELEMENTS
FINITE ROTATIONS
THIN-WALLED BEAMS
OPTIMIZATION
topic COMPOSITE BEAMS
FINITE ELEMENTS
FINITE ROTATIONS
THIN-WALLED BEAMS
OPTIMIZATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This work presents a consistent geometrically exact finite element formulation of the thin-walled anisotropic beam theory. The present formulation is thought to address problems of composite beams with nonlinear behavior. The constitutive formulation is based on the relations of composite laminates and thus the cross sectional stiffness matrix is obtained analytically. The variational formulation is written in terms of generalized strains, which are parametrized with the director field and its derivatives. The generalized strains and generalized beam forces are obtained by introducing a transformation that maps generalized components into physical components. A consistent tangent stiffness matrix is obtained by parametrizing the finite rotations with the total rotation vector; its derivation is greatly simplified by obtention of the derivatives of the director field via interpolation of nodal triads. Several numerical examples are presented to show the accuracy of the formulation and also its frame invariance and path independence.
Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Investigación en Multifísica Aplicada. - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Grupo de Investigación en Multifísica Aplicada; Argentina
Fil: Cortínez, Víctor Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
description This work presents a consistent geometrically exact finite element formulation of the thin-walled anisotropic beam theory. The present formulation is thought to address problems of composite beams with nonlinear behavior. The constitutive formulation is based on the relations of composite laminates and thus the cross sectional stiffness matrix is obtained analytically. The variational formulation is written in terms of generalized strains, which are parametrized with the director field and its derivatives. The generalized strains and generalized beam forces are obtained by introducing a transformation that maps generalized components into physical components. A consistent tangent stiffness matrix is obtained by parametrizing the finite rotations with the total rotation vector; its derivation is greatly simplified by obtention of the derivatives of the director field via interpolation of nodal triads. Several numerical examples are presented to show the accuracy of the formulation and also its frame invariance and path independence.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/195801
Saravia, César Martín; Machado, Sebastián Pablo; Cortínez, Víctor Hugo; A consistent total Lagrangian finite element for composite closed section thin walled beams; Elsevier; Thin-Walled Structures; 52; 3-2012; 102-116
0263-8231
CONICET Digital
CONICET
url http://hdl.handle.net/11336/195801
identifier_str_mv Saravia, César Martín; Machado, Sebastián Pablo; Cortínez, Víctor Hugo; A consistent total Lagrangian finite element for composite closed section thin walled beams; Elsevier; Thin-Walled Structures; 52; 3-2012; 102-116
0263-8231
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S026382311100262X?via%3Dihub
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tws.2011.11.007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614368614940672
score 13.070432