A large deformation small strain formulation for the mechanics of geometrically exact thin-walled composite beams

Autores
Saravia, César Martín
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work presents a new formulation of the geometrically exact thin walled composite beam theory. The formulation assumes that the beam can undergo arbitrary kinematical changes while the strains remain small, thus compatibilizing the hypotheses of the strain measure and the constitutive law of the composite material. A key point of the formulation is the development of a pure small strain measure written solely in terms of scalar products of position and director vectors; the latter is accomplished through the obtention of a generalized small strain vector by decomposition of the deformation gradient. The resulting small strain measure is objective under rigid body motion. The finite element implementation of the proposed formulation is simpler than the finite strain theory implementation previously developed by the authors. Numerical experiments show that the present formulation is very accurate and computationally more efficient than the finite strain formulation, thus it is more convenient for most practical applications.
Fil: Saravia, César Martín. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Composite Beams
Finite Elements
Finite Rotations
Thin-Walled Beams
Wind Turbines
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/21681

id CONICETDig_01ac6b4a3bcecae858b4f5c1f7d44e94
oai_identifier_str oai:ri.conicet.gov.ar:11336/21681
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A large deformation small strain formulation for the mechanics of geometrically exact thin-walled composite beamsSaravia, César MartínComposite BeamsFinite ElementsFinite RotationsThin-Walled BeamsWind Turbineshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This work presents a new formulation of the geometrically exact thin walled composite beam theory. The formulation assumes that the beam can undergo arbitrary kinematical changes while the strains remain small, thus compatibilizing the hypotheses of the strain measure and the constitutive law of the composite material. A key point of the formulation is the development of a pure small strain measure written solely in terms of scalar products of position and director vectors; the latter is accomplished through the obtention of a generalized small strain vector by decomposition of the deformation gradient. The resulting small strain measure is objective under rigid body motion. The finite element implementation of the proposed formulation is simpler than the finite strain theory implementation previously developed by the authors. Numerical experiments show that the present formulation is very accurate and computationally more efficient than the finite strain formulation, thus it is more convenient for most practical applications.Fil: Saravia, César Martín. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21681Saravia, César Martín; A large deformation small strain formulation for the mechanics of geometrically exact thin-walled composite beams; Elsevier; Thin-walled Structures; 84; 11-2014; 443-4510263-8231CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0263823114001724info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tws.2014.05.014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:02:41Zoai:ri.conicet.gov.ar:11336/21681instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:02:41.729CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A large deformation small strain formulation for the mechanics of geometrically exact thin-walled composite beams
title A large deformation small strain formulation for the mechanics of geometrically exact thin-walled composite beams
spellingShingle A large deformation small strain formulation for the mechanics of geometrically exact thin-walled composite beams
Saravia, César Martín
Composite Beams
Finite Elements
Finite Rotations
Thin-Walled Beams
Wind Turbines
title_short A large deformation small strain formulation for the mechanics of geometrically exact thin-walled composite beams
title_full A large deformation small strain formulation for the mechanics of geometrically exact thin-walled composite beams
title_fullStr A large deformation small strain formulation for the mechanics of geometrically exact thin-walled composite beams
title_full_unstemmed A large deformation small strain formulation for the mechanics of geometrically exact thin-walled composite beams
title_sort A large deformation small strain formulation for the mechanics of geometrically exact thin-walled composite beams
dc.creator.none.fl_str_mv Saravia, César Martín
author Saravia, César Martín
author_facet Saravia, César Martín
author_role author
dc.subject.none.fl_str_mv Composite Beams
Finite Elements
Finite Rotations
Thin-Walled Beams
Wind Turbines
topic Composite Beams
Finite Elements
Finite Rotations
Thin-Walled Beams
Wind Turbines
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This work presents a new formulation of the geometrically exact thin walled composite beam theory. The formulation assumes that the beam can undergo arbitrary kinematical changes while the strains remain small, thus compatibilizing the hypotheses of the strain measure and the constitutive law of the composite material. A key point of the formulation is the development of a pure small strain measure written solely in terms of scalar products of position and director vectors; the latter is accomplished through the obtention of a generalized small strain vector by decomposition of the deformation gradient. The resulting small strain measure is objective under rigid body motion. The finite element implementation of the proposed formulation is simpler than the finite strain theory implementation previously developed by the authors. Numerical experiments show that the present formulation is very accurate and computationally more efficient than the finite strain formulation, thus it is more convenient for most practical applications.
Fil: Saravia, César Martín. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description This work presents a new formulation of the geometrically exact thin walled composite beam theory. The formulation assumes that the beam can undergo arbitrary kinematical changes while the strains remain small, thus compatibilizing the hypotheses of the strain measure and the constitutive law of the composite material. A key point of the formulation is the development of a pure small strain measure written solely in terms of scalar products of position and director vectors; the latter is accomplished through the obtention of a generalized small strain vector by decomposition of the deformation gradient. The resulting small strain measure is objective under rigid body motion. The finite element implementation of the proposed formulation is simpler than the finite strain theory implementation previously developed by the authors. Numerical experiments show that the present formulation is very accurate and computationally more efficient than the finite strain formulation, thus it is more convenient for most practical applications.
publishDate 2014
dc.date.none.fl_str_mv 2014-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/21681
Saravia, César Martín; A large deformation small strain formulation for the mechanics of geometrically exact thin-walled composite beams; Elsevier; Thin-walled Structures; 84; 11-2014; 443-451
0263-8231
CONICET Digital
CONICET
url http://hdl.handle.net/11336/21681
identifier_str_mv Saravia, César Martín; A large deformation small strain formulation for the mechanics of geometrically exact thin-walled composite beams; Elsevier; Thin-walled Structures; 84; 11-2014; 443-451
0263-8231
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0263823114001724
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tws.2014.05.014
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083168600326144
score 13.22299