Gautama and Almost Gautama Algebras and their associated logics
- Autores
- Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recently, Gautama algebras were defined and investigated as a common generalization of the variety $\mathbb{RDBLS}\rm t$ of regular double Stone algebras and the variety $\mathbb{RKLS}\rm t$ of regular Kleene Stone algebras, both of which are, in turn, generalizations of Boolean algebras. Those algebras were named in honor and memory of the two founders of Indian Logic--{\bf Akshapada Gautama} and {\bf Medhatithi Gautama}. The purpose of this paper is to define and investigate a generalization of Gautama algebras, called ``Almost Gautama algebras ($\mathbb{AG}$, for short).'' More precisely, we give an explicit description of subdirectly irreducible Almost Gautama algebras. As consequences, explicit description of the lattice of subvarieties of $\mathbb{AG}$ and the equational bases for all its subvarieties are given. It is also shown that the variety $\mathbb{AG}$ is a discriminator variety. Next, we consider logicizing $\mathbb{AG}$; but the variety $\mathbb{AG}$ lacks an implication operation. We, therefore, introduce another variety of algebras called ``Almost Gautama Heyting algebras'' ($\mathbb{AGH}$, for short) and show that the variety $\mathbb{AGH}$ %of Almost Heyting algebras is term-equivalent to that of $\mathbb{AG}$. Next, a propositional logic, called $\mathcal{AG}$ (or $\mathcal{AGH}$), is defined and shown to be algebraizable (in the sense of Blok and Pigozzi) with the variety $\mathbb{AG}$, via $\mathbb{AGH},$ as its equivalent algebraic semantics (up to term equivalence). All axiomatic extensions of the logic $\mathcal{AG}$, corresponding to all the subvarieties of $\mathbb{AG}$ are given. They include the axiomatic extensions $\mathcal{RDBLS}t$, $\mathcal{RKLS}t$ and $\mathcal{G}$ of the logic $\mathcal{AG}$ corresponding to the varieties $\mathbb{RDBLS}\rm t$, $\mathbb{RKLS}\rm t$, and $\mathbb{G}$ (of Gautama algebras), respectively. It is also deduced that none of the axiomatic extensions of $\mathcal{AG}$ has the Disjunction Property. Finally, We revisit the classical logic with strong negation $\mathcal{CN}$ and classical Nelson algebras $\mathbb{CN}$ introduced by Vakarelov in 1977 and improve his results by showing that $\mathcal{CN}$ is algebraizable with $\mathbb{CN}$ as its algebraic semantics and that the logics $\mathcal{RKLS}\rm t$, $\mathcal{RKLS}\rm t\mathcal{H}$, 3-valued \L ukasivicz logic and the classical logic with strong negation are all equivalent.
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Sankappanavar, Hanamantagouda P.. State University of New York. Department of Mathematics ; Estados Unidos - Materia
-
REGULAR DOUBLE STONE ALGEBRA
REGULAR KLEENE STONE ALGEBRA
GAUTAMA ALGEBRA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/210843
Ver los metadatos del registro completo
id |
CONICETDig_fdac3992d457e0cd47a2916b4ce60d3e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/210843 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Gautama and Almost Gautama Algebras and their associated logicsCornejo, Juan ManuelSankappanavar, Hanamantagouda P.REGULAR DOUBLE STONE ALGEBRAREGULAR KLEENE STONE ALGEBRAGAUTAMA ALGEBRAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Recently, Gautama algebras were defined and investigated as a common generalization of the variety $\mathbb{RDBLS}\rm t$ of regular double Stone algebras and the variety $\mathbb{RKLS}\rm t$ of regular Kleene Stone algebras, both of which are, in turn, generalizations of Boolean algebras. Those algebras were named in honor and memory of the two founders of Indian Logic--{\bf Akshapada Gautama} and {\bf Medhatithi Gautama}. The purpose of this paper is to define and investigate a generalization of Gautama algebras, called ``Almost Gautama algebras ($\mathbb{AG}$, for short).'' More precisely, we give an explicit description of subdirectly irreducible Almost Gautama algebras. As consequences, explicit description of the lattice of subvarieties of $\mathbb{AG}$ and the equational bases for all its subvarieties are given. It is also shown that the variety $\mathbb{AG}$ is a discriminator variety. Next, we consider logicizing $\mathbb{AG}$; but the variety $\mathbb{AG}$ lacks an implication operation. We, therefore, introduce another variety of algebras called ``Almost Gautama Heyting algebras'' ($\mathbb{AGH}$, for short) and show that the variety $\mathbb{AGH}$ %of Almost Heyting algebras is term-equivalent to that of $\mathbb{AG}$. Next, a propositional logic, called $\mathcal{AG}$ (or $\mathcal{AGH}$), is defined and shown to be algebraizable (in the sense of Blok and Pigozzi) with the variety $\mathbb{AG}$, via $\mathbb{AGH},$ as its equivalent algebraic semantics (up to term equivalence). All axiomatic extensions of the logic $\mathcal{AG}$, corresponding to all the subvarieties of $\mathbb{AG}$ are given. They include the axiomatic extensions $\mathcal{RDBLS}t$, $\mathcal{RKLS}t$ and $\mathcal{G}$ of the logic $\mathcal{AG}$ corresponding to the varieties $\mathbb{RDBLS}\rm t$, $\mathbb{RKLS}\rm t$, and $\mathbb{G}$ (of Gautama algebras), respectively. It is also deduced that none of the axiomatic extensions of $\mathcal{AG}$ has the Disjunction Property. Finally, We revisit the classical logic with strong negation $\mathcal{CN}$ and classical Nelson algebras $\mathbb{CN}$ introduced by Vakarelov in 1977 and improve his results by showing that $\mathcal{CN}$ is algebraizable with $\mathbb{CN}$ as its algebraic semantics and that the logics $\mathcal{RKLS}\rm t$, $\mathcal{RKLS}\rm t\mathcal{H}$, 3-valued \L ukasivicz logic and the classical logic with strong negation are all equivalent.Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Sankappanavar, Hanamantagouda P.. State University of New York. Department of Mathematics ; Estados UnidosIslamic Azad University2023-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210843Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Gautama and Almost Gautama Algebras and their associated logics; Islamic Azad University; Transactions on Fuzzy Sets and Systems; 2; 2; 1-6-2023; 1-362821-0131CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://tfss.journals.iau.ir/article_702416.htmlinfo:eu-repo/semantics/altIdentifier/doi/ 10.30495/TFSS.2023.1983060.1068info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:29:19Zoai:ri.conicet.gov.ar:11336/210843instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:29:20.167CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Gautama and Almost Gautama Algebras and their associated logics |
title |
Gautama and Almost Gautama Algebras and their associated logics |
spellingShingle |
Gautama and Almost Gautama Algebras and their associated logics Cornejo, Juan Manuel REGULAR DOUBLE STONE ALGEBRA REGULAR KLEENE STONE ALGEBRA GAUTAMA ALGEBRA |
title_short |
Gautama and Almost Gautama Algebras and their associated logics |
title_full |
Gautama and Almost Gautama Algebras and their associated logics |
title_fullStr |
Gautama and Almost Gautama Algebras and their associated logics |
title_full_unstemmed |
Gautama and Almost Gautama Algebras and their associated logics |
title_sort |
Gautama and Almost Gautama Algebras and their associated logics |
dc.creator.none.fl_str_mv |
Cornejo, Juan Manuel Sankappanavar, Hanamantagouda P. |
author |
Cornejo, Juan Manuel |
author_facet |
Cornejo, Juan Manuel Sankappanavar, Hanamantagouda P. |
author_role |
author |
author2 |
Sankappanavar, Hanamantagouda P. |
author2_role |
author |
dc.subject.none.fl_str_mv |
REGULAR DOUBLE STONE ALGEBRA REGULAR KLEENE STONE ALGEBRA GAUTAMA ALGEBRA |
topic |
REGULAR DOUBLE STONE ALGEBRA REGULAR KLEENE STONE ALGEBRA GAUTAMA ALGEBRA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recently, Gautama algebras were defined and investigated as a common generalization of the variety $\mathbb{RDBLS}\rm t$ of regular double Stone algebras and the variety $\mathbb{RKLS}\rm t$ of regular Kleene Stone algebras, both of which are, in turn, generalizations of Boolean algebras. Those algebras were named in honor and memory of the two founders of Indian Logic--{\bf Akshapada Gautama} and {\bf Medhatithi Gautama}. The purpose of this paper is to define and investigate a generalization of Gautama algebras, called ``Almost Gautama algebras ($\mathbb{AG}$, for short).'' More precisely, we give an explicit description of subdirectly irreducible Almost Gautama algebras. As consequences, explicit description of the lattice of subvarieties of $\mathbb{AG}$ and the equational bases for all its subvarieties are given. It is also shown that the variety $\mathbb{AG}$ is a discriminator variety. Next, we consider logicizing $\mathbb{AG}$; but the variety $\mathbb{AG}$ lacks an implication operation. We, therefore, introduce another variety of algebras called ``Almost Gautama Heyting algebras'' ($\mathbb{AGH}$, for short) and show that the variety $\mathbb{AGH}$ %of Almost Heyting algebras is term-equivalent to that of $\mathbb{AG}$. Next, a propositional logic, called $\mathcal{AG}$ (or $\mathcal{AGH}$), is defined and shown to be algebraizable (in the sense of Blok and Pigozzi) with the variety $\mathbb{AG}$, via $\mathbb{AGH},$ as its equivalent algebraic semantics (up to term equivalence). All axiomatic extensions of the logic $\mathcal{AG}$, corresponding to all the subvarieties of $\mathbb{AG}$ are given. They include the axiomatic extensions $\mathcal{RDBLS}t$, $\mathcal{RKLS}t$ and $\mathcal{G}$ of the logic $\mathcal{AG}$ corresponding to the varieties $\mathbb{RDBLS}\rm t$, $\mathbb{RKLS}\rm t$, and $\mathbb{G}$ (of Gautama algebras), respectively. It is also deduced that none of the axiomatic extensions of $\mathcal{AG}$ has the Disjunction Property. Finally, We revisit the classical logic with strong negation $\mathcal{CN}$ and classical Nelson algebras $\mathbb{CN}$ introduced by Vakarelov in 1977 and improve his results by showing that $\mathcal{CN}$ is algebraizable with $\mathbb{CN}$ as its algebraic semantics and that the logics $\mathcal{RKLS}\rm t$, $\mathcal{RKLS}\rm t\mathcal{H}$, 3-valued \L ukasivicz logic and the classical logic with strong negation are all equivalent. Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Sankappanavar, Hanamantagouda P.. State University of New York. Department of Mathematics ; Estados Unidos |
description |
Recently, Gautama algebras were defined and investigated as a common generalization of the variety $\mathbb{RDBLS}\rm t$ of regular double Stone algebras and the variety $\mathbb{RKLS}\rm t$ of regular Kleene Stone algebras, both of which are, in turn, generalizations of Boolean algebras. Those algebras were named in honor and memory of the two founders of Indian Logic--{\bf Akshapada Gautama} and {\bf Medhatithi Gautama}. The purpose of this paper is to define and investigate a generalization of Gautama algebras, called ``Almost Gautama algebras ($\mathbb{AG}$, for short).'' More precisely, we give an explicit description of subdirectly irreducible Almost Gautama algebras. As consequences, explicit description of the lattice of subvarieties of $\mathbb{AG}$ and the equational bases for all its subvarieties are given. It is also shown that the variety $\mathbb{AG}$ is a discriminator variety. Next, we consider logicizing $\mathbb{AG}$; but the variety $\mathbb{AG}$ lacks an implication operation. We, therefore, introduce another variety of algebras called ``Almost Gautama Heyting algebras'' ($\mathbb{AGH}$, for short) and show that the variety $\mathbb{AGH}$ %of Almost Heyting algebras is term-equivalent to that of $\mathbb{AG}$. Next, a propositional logic, called $\mathcal{AG}$ (or $\mathcal{AGH}$), is defined and shown to be algebraizable (in the sense of Blok and Pigozzi) with the variety $\mathbb{AG}$, via $\mathbb{AGH},$ as its equivalent algebraic semantics (up to term equivalence). All axiomatic extensions of the logic $\mathcal{AG}$, corresponding to all the subvarieties of $\mathbb{AG}$ are given. They include the axiomatic extensions $\mathcal{RDBLS}t$, $\mathcal{RKLS}t$ and $\mathcal{G}$ of the logic $\mathcal{AG}$ corresponding to the varieties $\mathbb{RDBLS}\rm t$, $\mathbb{RKLS}\rm t$, and $\mathbb{G}$ (of Gautama algebras), respectively. It is also deduced that none of the axiomatic extensions of $\mathcal{AG}$ has the Disjunction Property. Finally, We revisit the classical logic with strong negation $\mathcal{CN}$ and classical Nelson algebras $\mathbb{CN}$ introduced by Vakarelov in 1977 and improve his results by showing that $\mathcal{CN}$ is algebraizable with $\mathbb{CN}$ as its algebraic semantics and that the logics $\mathcal{RKLS}\rm t$, $\mathcal{RKLS}\rm t\mathcal{H}$, 3-valued \L ukasivicz logic and the classical logic with strong negation are all equivalent. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/210843 Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Gautama and Almost Gautama Algebras and their associated logics; Islamic Azad University; Transactions on Fuzzy Sets and Systems; 2; 2; 1-6-2023; 1-36 2821-0131 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/210843 |
identifier_str_mv |
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Gautama and Almost Gautama Algebras and their associated logics; Islamic Azad University; Transactions on Fuzzy Sets and Systems; 2; 2; 1-6-2023; 1-36 2821-0131 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://tfss.journals.iau.ir/article_702416.html info:eu-repo/semantics/altIdentifier/doi/ 10.30495/TFSS.2023.1983060.1068 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Islamic Azad University |
publisher.none.fl_str_mv |
Islamic Azad University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083432971501568 |
score |
13.22299 |