‎Gautama and Almost Gautama Algebras and their associated logics

Autores
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recently, Gautama algebras were defined and investigated as a common generalization of the variety $\mathbb{RDBLS}\rm t$ of regular double Stone algebras and the variety $\mathbb{RKLS}\rm t$ of regular Kleene Stone algebras, both of which are, in turn, generalizations of Boolean algebras. Those algebras were named in honor and memory of the two founders of Indian Logic--{\bf Akshapada Gautama} and {\bf Medhatithi Gautama}. The purpose of this paper is to define and investigate a generalization of Gautama algebras, called ``Almost Gautama algebras ($\mathbb{AG}$, for short).'' More precisely, we give an explicit description of subdirectly irreducible Almost Gautama algebras. As consequences, explicit description of the lattice of subvarieties of $\mathbb{AG}$ and the equational bases for all its subvarieties are given. It is also shown that the variety $\mathbb{AG}$ is a discriminator variety. Next, we consider logicizing $\mathbb{AG}$; but the variety $\mathbb{AG}$ lacks an implication operation. We, therefore, introduce another variety of algebras called ``Almost Gautama Heyting algebras'' ($\mathbb{AGH}$, for short) and show that the variety $\mathbb{AGH}$ %of Almost Heyting algebras is term-equivalent to that of $\mathbb{AG}$. Next, a propositional logic, called $\mathcal{AG}$ (or $\mathcal{AGH}$), is defined and shown to be algebraizable (in the sense of Blok and Pigozzi) with the variety $\mathbb{AG}$, via $\mathbb{AGH},$ as its equivalent algebraic semantics (up to term equivalence). All axiomatic extensions of the logic $\mathcal{AG}$, corresponding to all the subvarieties of $\mathbb{AG}$ are given. They include the axiomatic extensions $\mathcal{RDBLS}t$, $\mathcal{RKLS}t$ and $\mathcal{G}$ of the logic $\mathcal{AG}$ corresponding to the varieties $\mathbb{RDBLS}\rm t$, $\mathbb{RKLS}\rm t$, and $\mathbb{G}$ (of Gautama algebras), respectively. It is also deduced that none of the axiomatic extensions of $\mathcal{AG}$ has the Disjunction Property. Finally, We revisit the classical logic with strong negation $\mathcal{CN}$ and classical Nelson algebras $\mathbb{CN}$ introduced by Vakarelov in 1977 and improve his results by showing that $\mathcal{CN}$ is algebraizable with $\mathbb{CN}$ as its algebraic semantics and that the logics $\mathcal{RKLS}\rm t$, $\mathcal{RKLS}\rm t\mathcal{H}$, 3-valued \L ukasivicz logic and the classical logic with strong negation are all equivalent.
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Sankappanavar, Hanamantagouda P.. State University of New York. Department of Mathematics ; Estados Unidos
Materia
REGULAR DOUBLE STONE ALGEBRA
REGULAR KLEENE STONE ALGEBRA
GAUTAMA ALGEBRA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/210843

id CONICETDig_fdac3992d457e0cd47a2916b4ce60d3e
oai_identifier_str oai:ri.conicet.gov.ar:11336/210843
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling ‎Gautama and Almost Gautama Algebras and their associated logicsCornejo, Juan ManuelSankappanavar, Hanamantagouda P.REGULAR DOUBLE STONE ALGEBRAREGULAR KLEENE STONE ALGEBRAGAUTAMA ALGEBRAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Recently, Gautama algebras were defined and investigated as a common generalization of the variety $\mathbb{RDBLS}\rm t$ of regular double Stone algebras and the variety $\mathbb{RKLS}\rm t$ of regular Kleene Stone algebras, both of which are, in turn, generalizations of Boolean algebras. Those algebras were named in honor and memory of the two founders of Indian Logic--{\bf Akshapada Gautama} and {\bf Medhatithi Gautama}. The purpose of this paper is to define and investigate a generalization of Gautama algebras, called ``Almost Gautama algebras ($\mathbb{AG}$, for short).'' More precisely, we give an explicit description of subdirectly irreducible Almost Gautama algebras. As consequences, explicit description of the lattice of subvarieties of $\mathbb{AG}$ and the equational bases for all its subvarieties are given. It is also shown that the variety $\mathbb{AG}$ is a discriminator variety. Next, we consider logicizing $\mathbb{AG}$; but the variety $\mathbb{AG}$ lacks an implication operation. We, therefore, introduce another variety of algebras called ``Almost Gautama Heyting algebras'' ($\mathbb{AGH}$, for short) and show that the variety $\mathbb{AGH}$ %of Almost Heyting algebras is term-equivalent to that of $\mathbb{AG}$. Next, a propositional logic, called $\mathcal{AG}$ (or $\mathcal{AGH}$), is defined and shown to be algebraizable (in the sense of Blok and Pigozzi) with the variety $\mathbb{AG}$, via $\mathbb{AGH},$ as its equivalent algebraic semantics (up to term equivalence). All axiomatic extensions of the logic $\mathcal{AG}$, corresponding to all the subvarieties of $\mathbb{AG}$ are given. They include the axiomatic extensions $\mathcal{RDBLS}t$, $\mathcal{RKLS}t$ and $\mathcal{G}$ of the logic $\mathcal{AG}$ corresponding to the varieties $\mathbb{RDBLS}\rm t$, $\mathbb{RKLS}\rm t$, and $\mathbb{G}$ (of Gautama algebras), respectively. It is also deduced that none of the axiomatic extensions of $\mathcal{AG}$ has the Disjunction Property. Finally, We revisit the classical logic with strong negation $\mathcal{CN}$ and classical Nelson algebras $\mathbb{CN}$ introduced by Vakarelov in 1977 and improve his results by showing that $\mathcal{CN}$ is algebraizable with $\mathbb{CN}$ as its algebraic semantics and that the logics $\mathcal{RKLS}\rm t$, $\mathcal{RKLS}\rm t\mathcal{H}$, 3-valued \L ukasivicz logic and the classical logic with strong negation are all equivalent.Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Sankappanavar, Hanamantagouda P.. State University of New York. Department of Mathematics ; Estados UnidosIslamic Azad University2023-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210843Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; ‎Gautama and Almost Gautama Algebras and their associated logics; Islamic Azad University; Transactions on Fuzzy Sets and Systems; 2; 2; 1-6-2023; 1-362821-0131CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://tfss.journals.iau.ir/article_702416.htmlinfo:eu-repo/semantics/altIdentifier/doi/ 10.30495/TFSS.2023.1983060.1068info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:29:19Zoai:ri.conicet.gov.ar:11336/210843instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:29:20.167CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv ‎Gautama and Almost Gautama Algebras and their associated logics
title ‎Gautama and Almost Gautama Algebras and their associated logics
spellingShingle ‎Gautama and Almost Gautama Algebras and their associated logics
Cornejo, Juan Manuel
REGULAR DOUBLE STONE ALGEBRA
REGULAR KLEENE STONE ALGEBRA
GAUTAMA ALGEBRA
title_short ‎Gautama and Almost Gautama Algebras and their associated logics
title_full ‎Gautama and Almost Gautama Algebras and their associated logics
title_fullStr ‎Gautama and Almost Gautama Algebras and their associated logics
title_full_unstemmed ‎Gautama and Almost Gautama Algebras and their associated logics
title_sort ‎Gautama and Almost Gautama Algebras and their associated logics
dc.creator.none.fl_str_mv Cornejo, Juan Manuel
Sankappanavar, Hanamantagouda P.
author Cornejo, Juan Manuel
author_facet Cornejo, Juan Manuel
Sankappanavar, Hanamantagouda P.
author_role author
author2 Sankappanavar, Hanamantagouda P.
author2_role author
dc.subject.none.fl_str_mv REGULAR DOUBLE STONE ALGEBRA
REGULAR KLEENE STONE ALGEBRA
GAUTAMA ALGEBRA
topic REGULAR DOUBLE STONE ALGEBRA
REGULAR KLEENE STONE ALGEBRA
GAUTAMA ALGEBRA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Recently, Gautama algebras were defined and investigated as a common generalization of the variety $\mathbb{RDBLS}\rm t$ of regular double Stone algebras and the variety $\mathbb{RKLS}\rm t$ of regular Kleene Stone algebras, both of which are, in turn, generalizations of Boolean algebras. Those algebras were named in honor and memory of the two founders of Indian Logic--{\bf Akshapada Gautama} and {\bf Medhatithi Gautama}. The purpose of this paper is to define and investigate a generalization of Gautama algebras, called ``Almost Gautama algebras ($\mathbb{AG}$, for short).'' More precisely, we give an explicit description of subdirectly irreducible Almost Gautama algebras. As consequences, explicit description of the lattice of subvarieties of $\mathbb{AG}$ and the equational bases for all its subvarieties are given. It is also shown that the variety $\mathbb{AG}$ is a discriminator variety. Next, we consider logicizing $\mathbb{AG}$; but the variety $\mathbb{AG}$ lacks an implication operation. We, therefore, introduce another variety of algebras called ``Almost Gautama Heyting algebras'' ($\mathbb{AGH}$, for short) and show that the variety $\mathbb{AGH}$ %of Almost Heyting algebras is term-equivalent to that of $\mathbb{AG}$. Next, a propositional logic, called $\mathcal{AG}$ (or $\mathcal{AGH}$), is defined and shown to be algebraizable (in the sense of Blok and Pigozzi) with the variety $\mathbb{AG}$, via $\mathbb{AGH},$ as its equivalent algebraic semantics (up to term equivalence). All axiomatic extensions of the logic $\mathcal{AG}$, corresponding to all the subvarieties of $\mathbb{AG}$ are given. They include the axiomatic extensions $\mathcal{RDBLS}t$, $\mathcal{RKLS}t$ and $\mathcal{G}$ of the logic $\mathcal{AG}$ corresponding to the varieties $\mathbb{RDBLS}\rm t$, $\mathbb{RKLS}\rm t$, and $\mathbb{G}$ (of Gautama algebras), respectively. It is also deduced that none of the axiomatic extensions of $\mathcal{AG}$ has the Disjunction Property. Finally, We revisit the classical logic with strong negation $\mathcal{CN}$ and classical Nelson algebras $\mathbb{CN}$ introduced by Vakarelov in 1977 and improve his results by showing that $\mathcal{CN}$ is algebraizable with $\mathbb{CN}$ as its algebraic semantics and that the logics $\mathcal{RKLS}\rm t$, $\mathcal{RKLS}\rm t\mathcal{H}$, 3-valued \L ukasivicz logic and the classical logic with strong negation are all equivalent.
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Sankappanavar, Hanamantagouda P.. State University of New York. Department of Mathematics ; Estados Unidos
description Recently, Gautama algebras were defined and investigated as a common generalization of the variety $\mathbb{RDBLS}\rm t$ of regular double Stone algebras and the variety $\mathbb{RKLS}\rm t$ of regular Kleene Stone algebras, both of which are, in turn, generalizations of Boolean algebras. Those algebras were named in honor and memory of the two founders of Indian Logic--{\bf Akshapada Gautama} and {\bf Medhatithi Gautama}. The purpose of this paper is to define and investigate a generalization of Gautama algebras, called ``Almost Gautama algebras ($\mathbb{AG}$, for short).'' More precisely, we give an explicit description of subdirectly irreducible Almost Gautama algebras. As consequences, explicit description of the lattice of subvarieties of $\mathbb{AG}$ and the equational bases for all its subvarieties are given. It is also shown that the variety $\mathbb{AG}$ is a discriminator variety. Next, we consider logicizing $\mathbb{AG}$; but the variety $\mathbb{AG}$ lacks an implication operation. We, therefore, introduce another variety of algebras called ``Almost Gautama Heyting algebras'' ($\mathbb{AGH}$, for short) and show that the variety $\mathbb{AGH}$ %of Almost Heyting algebras is term-equivalent to that of $\mathbb{AG}$. Next, a propositional logic, called $\mathcal{AG}$ (or $\mathcal{AGH}$), is defined and shown to be algebraizable (in the sense of Blok and Pigozzi) with the variety $\mathbb{AG}$, via $\mathbb{AGH},$ as its equivalent algebraic semantics (up to term equivalence). All axiomatic extensions of the logic $\mathcal{AG}$, corresponding to all the subvarieties of $\mathbb{AG}$ are given. They include the axiomatic extensions $\mathcal{RDBLS}t$, $\mathcal{RKLS}t$ and $\mathcal{G}$ of the logic $\mathcal{AG}$ corresponding to the varieties $\mathbb{RDBLS}\rm t$, $\mathbb{RKLS}\rm t$, and $\mathbb{G}$ (of Gautama algebras), respectively. It is also deduced that none of the axiomatic extensions of $\mathcal{AG}$ has the Disjunction Property. Finally, We revisit the classical logic with strong negation $\mathcal{CN}$ and classical Nelson algebras $\mathbb{CN}$ introduced by Vakarelov in 1977 and improve his results by showing that $\mathcal{CN}$ is algebraizable with $\mathbb{CN}$ as its algebraic semantics and that the logics $\mathcal{RKLS}\rm t$, $\mathcal{RKLS}\rm t\mathcal{H}$, 3-valued \L ukasivicz logic and the classical logic with strong negation are all equivalent.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/210843
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; ‎Gautama and Almost Gautama Algebras and their associated logics; Islamic Azad University; Transactions on Fuzzy Sets and Systems; 2; 2; 1-6-2023; 1-36
2821-0131
CONICET Digital
CONICET
url http://hdl.handle.net/11336/210843
identifier_str_mv Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; ‎Gautama and Almost Gautama Algebras and their associated logics; Islamic Azad University; Transactions on Fuzzy Sets and Systems; 2; 2; 1-6-2023; 1-36
2821-0131
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://tfss.journals.iau.ir/article_702416.html
info:eu-repo/semantics/altIdentifier/doi/ 10.30495/TFSS.2023.1983060.1068
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Islamic Azad University
publisher.none.fl_str_mv Islamic Azad University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083432971501568
score 13.22299