Modeling Electrode Shape Changes in Electrodeposition and Electrochemical Dissolution
- Autores
- Colli, Alejandro Nicolás; Dominguez Benetton, X.; Fransaer, J.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the fields of metal production, surface finishing, and electronic device manufacturing, achieving precise control over electrochemical processes is crucial for product quality, efficiency, and cost-effectiveness. This paper introduces an open-source modeling tool based on a dynamic mesh technique built on the finite volume method using the C toolbox OpenFOAM. This tool has been validated against both newly proposed analytical solutions and existing numerical and experimental results in various conditions and kinetic controls. The analytical solution predicts the electrode surface position, current, or cell voltage difference for confined electrodes. It considers primary and secondary current distributions with linear kinetics under different electric control modes. Notably, the validation highlights the congruence of the new method with prior studies and underscores its potential to offer enhanced predictive capabilities. Furthermore, this work extends beyond traditional modeling approaches by incorporating pulse reverse plating, which has been successfully modeled using the dynamic mesh method. Additionally, a modified Wagner number is proposed to predict in advance the optimal conditions for achieving a more uniform deposit. This innovative approach contributes to the advancement of theoretical understanding and will improve practical applications in electrochemical deposition and dissolution processes.
Fil: Colli, Alejandro Nicolás. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada e Ingeniería Electroquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Dominguez Benetton, X.. No especifíca;
Fil: Fransaer, J.. No especifíca; - Materia
-
Electrochemical systems
Open-source
Moving meshes
Current and potential distribution
Pulse reverse
Metal deposition/dissolution - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/240664
Ver los metadatos del registro completo
id |
CONICETDig_fcfe8c92030b6adfa51824b3608cf1e9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/240664 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modeling Electrode Shape Changes in Electrodeposition and Electrochemical DissolutionColli, Alejandro NicolásDominguez Benetton, X.Fransaer, J.Electrochemical systemsOpen-sourceMoving meshesCurrent and potential distributionPulse reverseMetal deposition/dissolutionhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In the fields of metal production, surface finishing, and electronic device manufacturing, achieving precise control over electrochemical processes is crucial for product quality, efficiency, and cost-effectiveness. This paper introduces an open-source modeling tool based on a dynamic mesh technique built on the finite volume method using the C toolbox OpenFOAM. This tool has been validated against both newly proposed analytical solutions and existing numerical and experimental results in various conditions and kinetic controls. The analytical solution predicts the electrode surface position, current, or cell voltage difference for confined electrodes. It considers primary and secondary current distributions with linear kinetics under different electric control modes. Notably, the validation highlights the congruence of the new method with prior studies and underscores its potential to offer enhanced predictive capabilities. Furthermore, this work extends beyond traditional modeling approaches by incorporating pulse reverse plating, which has been successfully modeled using the dynamic mesh method. Additionally, a modified Wagner number is proposed to predict in advance the optimal conditions for achieving a more uniform deposit. This innovative approach contributes to the advancement of theoretical understanding and will improve practical applications in electrochemical deposition and dissolution processes.Fil: Colli, Alejandro Nicolás. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada e Ingeniería Electroquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Dominguez Benetton, X.. No especifíca;Fil: Fransaer, J.. No especifíca;Electrochemical Society2024-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/240664Colli, Alejandro Nicolás; Dominguez Benetton, X.; Fransaer, J.; Modeling Electrode Shape Changes in Electrodeposition and Electrochemical Dissolution; Electrochemical Society; Journal of the Electrochemical Society; 171; 7; 7-2024; 1-130013-4651CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1149/1945-7111/ad5b1finfo:eu-repo/semantics/altIdentifier/doi/10.1149/1945-7111/ad5b1finfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:31Zoai:ri.conicet.gov.ar:11336/240664instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:31.329CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modeling Electrode Shape Changes in Electrodeposition and Electrochemical Dissolution |
title |
Modeling Electrode Shape Changes in Electrodeposition and Electrochemical Dissolution |
spellingShingle |
Modeling Electrode Shape Changes in Electrodeposition and Electrochemical Dissolution Colli, Alejandro Nicolás Electrochemical systems Open-source Moving meshes Current and potential distribution Pulse reverse Metal deposition/dissolution |
title_short |
Modeling Electrode Shape Changes in Electrodeposition and Electrochemical Dissolution |
title_full |
Modeling Electrode Shape Changes in Electrodeposition and Electrochemical Dissolution |
title_fullStr |
Modeling Electrode Shape Changes in Electrodeposition and Electrochemical Dissolution |
title_full_unstemmed |
Modeling Electrode Shape Changes in Electrodeposition and Electrochemical Dissolution |
title_sort |
Modeling Electrode Shape Changes in Electrodeposition and Electrochemical Dissolution |
dc.creator.none.fl_str_mv |
Colli, Alejandro Nicolás Dominguez Benetton, X. Fransaer, J. |
author |
Colli, Alejandro Nicolás |
author_facet |
Colli, Alejandro Nicolás Dominguez Benetton, X. Fransaer, J. |
author_role |
author |
author2 |
Dominguez Benetton, X. Fransaer, J. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Electrochemical systems Open-source Moving meshes Current and potential distribution Pulse reverse Metal deposition/dissolution |
topic |
Electrochemical systems Open-source Moving meshes Current and potential distribution Pulse reverse Metal deposition/dissolution |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In the fields of metal production, surface finishing, and electronic device manufacturing, achieving precise control over electrochemical processes is crucial for product quality, efficiency, and cost-effectiveness. This paper introduces an open-source modeling tool based on a dynamic mesh technique built on the finite volume method using the C toolbox OpenFOAM. This tool has been validated against both newly proposed analytical solutions and existing numerical and experimental results in various conditions and kinetic controls. The analytical solution predicts the electrode surface position, current, or cell voltage difference for confined electrodes. It considers primary and secondary current distributions with linear kinetics under different electric control modes. Notably, the validation highlights the congruence of the new method with prior studies and underscores its potential to offer enhanced predictive capabilities. Furthermore, this work extends beyond traditional modeling approaches by incorporating pulse reverse plating, which has been successfully modeled using the dynamic mesh method. Additionally, a modified Wagner number is proposed to predict in advance the optimal conditions for achieving a more uniform deposit. This innovative approach contributes to the advancement of theoretical understanding and will improve practical applications in electrochemical deposition and dissolution processes. Fil: Colli, Alejandro Nicolás. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada e Ingeniería Electroquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Dominguez Benetton, X.. No especifíca; Fil: Fransaer, J.. No especifíca; |
description |
In the fields of metal production, surface finishing, and electronic device manufacturing, achieving precise control over electrochemical processes is crucial for product quality, efficiency, and cost-effectiveness. This paper introduces an open-source modeling tool based on a dynamic mesh technique built on the finite volume method using the C toolbox OpenFOAM. This tool has been validated against both newly proposed analytical solutions and existing numerical and experimental results in various conditions and kinetic controls. The analytical solution predicts the electrode surface position, current, or cell voltage difference for confined electrodes. It considers primary and secondary current distributions with linear kinetics under different electric control modes. Notably, the validation highlights the congruence of the new method with prior studies and underscores its potential to offer enhanced predictive capabilities. Furthermore, this work extends beyond traditional modeling approaches by incorporating pulse reverse plating, which has been successfully modeled using the dynamic mesh method. Additionally, a modified Wagner number is proposed to predict in advance the optimal conditions for achieving a more uniform deposit. This innovative approach contributes to the advancement of theoretical understanding and will improve practical applications in electrochemical deposition and dissolution processes. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/240664 Colli, Alejandro Nicolás; Dominguez Benetton, X.; Fransaer, J.; Modeling Electrode Shape Changes in Electrodeposition and Electrochemical Dissolution; Electrochemical Society; Journal of the Electrochemical Society; 171; 7; 7-2024; 1-13 0013-4651 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/240664 |
identifier_str_mv |
Colli, Alejandro Nicolás; Dominguez Benetton, X.; Fransaer, J.; Modeling Electrode Shape Changes in Electrodeposition and Electrochemical Dissolution; Electrochemical Society; Journal of the Electrochemical Society; 171; 7; 7-2024; 1-13 0013-4651 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1149/1945-7111/ad5b1f info:eu-repo/semantics/altIdentifier/doi/10.1149/1945-7111/ad5b1f |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Electrochemical Society |
publisher.none.fl_str_mv |
Electrochemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270084241817600 |
score |
13.13397 |