Numerical phase-field model validation for dissolution of minerals
- Autores
- Yang, Sha; Ukrainczyk, Neven; Caggiano, Antonio; Koenders, Eddie
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.
Fil: Yang, Sha. Universitat Technische Darmstadt; Alemania
Fil: Ukrainczyk, Neven. Universitat Technische Darmstadt; Alemania
Fil: Caggiano, Antonio. Universitat Technische Darmstadt; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Fil: Koenders, Eddie. Universitat Technische Darmstadt; Alemania - Materia
-
DIFFUSIVE TRANSPORT
MINERAL DISSOLUTION
MOVING BOUNDARY PROBLEM
NUMERICAL SIMULATION
PHASE-FIELD (PF) METHOD
REACTION RATE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/173661
Ver los metadatos del registro completo
id |
CONICETDig_a605589b5820c833f9f65921cfab6912 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/173661 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Numerical phase-field model validation for dissolution of mineralsYang, ShaUkrainczyk, NevenCaggiano, AntonioKoenders, EddieDIFFUSIVE TRANSPORTMINERAL DISSOLUTIONMOVING BOUNDARY PROBLEMNUMERICAL SIMULATIONPHASE-FIELD (PF) METHODREACTION RATEhttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.Fil: Yang, Sha. Universitat Technische Darmstadt; AlemaniaFil: Ukrainczyk, Neven. Universitat Technische Darmstadt; AlemaniaFil: Caggiano, Antonio. Universitat Technische Darmstadt; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Koenders, Eddie. Universitat Technische Darmstadt; AlemaniaMDPI AG2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/173661Yang, Sha; Ukrainczyk, Neven; Caggiano, Antonio; Koenders, Eddie; Numerical phase-field model validation for dissolution of minerals; MDPI AG; Applied Sciences; 11; 6; 3-2021; 1-222076-3417CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/app11062464info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:35Zoai:ri.conicet.gov.ar:11336/173661instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:35.699CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Numerical phase-field model validation for dissolution of minerals |
title |
Numerical phase-field model validation for dissolution of minerals |
spellingShingle |
Numerical phase-field model validation for dissolution of minerals Yang, Sha DIFFUSIVE TRANSPORT MINERAL DISSOLUTION MOVING BOUNDARY PROBLEM NUMERICAL SIMULATION PHASE-FIELD (PF) METHOD REACTION RATE |
title_short |
Numerical phase-field model validation for dissolution of minerals |
title_full |
Numerical phase-field model validation for dissolution of minerals |
title_fullStr |
Numerical phase-field model validation for dissolution of minerals |
title_full_unstemmed |
Numerical phase-field model validation for dissolution of minerals |
title_sort |
Numerical phase-field model validation for dissolution of minerals |
dc.creator.none.fl_str_mv |
Yang, Sha Ukrainczyk, Neven Caggiano, Antonio Koenders, Eddie |
author |
Yang, Sha |
author_facet |
Yang, Sha Ukrainczyk, Neven Caggiano, Antonio Koenders, Eddie |
author_role |
author |
author2 |
Ukrainczyk, Neven Caggiano, Antonio Koenders, Eddie |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DIFFUSIVE TRANSPORT MINERAL DISSOLUTION MOVING BOUNDARY PROBLEM NUMERICAL SIMULATION PHASE-FIELD (PF) METHOD REACTION RATE |
topic |
DIFFUSIVE TRANSPORT MINERAL DISSOLUTION MOVING BOUNDARY PROBLEM NUMERICAL SIMULATION PHASE-FIELD (PF) METHOD REACTION RATE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.1 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism. Fil: Yang, Sha. Universitat Technische Darmstadt; Alemania Fil: Ukrainczyk, Neven. Universitat Technische Darmstadt; Alemania Fil: Caggiano, Antonio. Universitat Technische Darmstadt; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina Fil: Koenders, Eddie. Universitat Technische Darmstadt; Alemania |
description |
Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/173661 Yang, Sha; Ukrainczyk, Neven; Caggiano, Antonio; Koenders, Eddie; Numerical phase-field model validation for dissolution of minerals; MDPI AG; Applied Sciences; 11; 6; 3-2021; 1-22 2076-3417 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/173661 |
identifier_str_mv |
Yang, Sha; Ukrainczyk, Neven; Caggiano, Antonio; Koenders, Eddie; Numerical phase-field model validation for dissolution of minerals; MDPI AG; Applied Sciences; 11; 6; 3-2021; 1-22 2076-3417 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/app11062464 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269040374972416 |
score |
13.13397 |