Numerical phase-field model validation for dissolution of minerals

Autores
Yang, Sha; Ukrainczyk, Neven; Caggiano, Antonio; Koenders, Eddie
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.
Fil: Yang, Sha. Universitat Technische Darmstadt; Alemania
Fil: Ukrainczyk, Neven. Universitat Technische Darmstadt; Alemania
Fil: Caggiano, Antonio. Universitat Technische Darmstadt; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Fil: Koenders, Eddie. Universitat Technische Darmstadt; Alemania
Materia
DIFFUSIVE TRANSPORT
MINERAL DISSOLUTION
MOVING BOUNDARY PROBLEM
NUMERICAL SIMULATION
PHASE-FIELD (PF) METHOD
REACTION RATE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/173661

id CONICETDig_a605589b5820c833f9f65921cfab6912
oai_identifier_str oai:ri.conicet.gov.ar:11336/173661
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Numerical phase-field model validation for dissolution of mineralsYang, ShaUkrainczyk, NevenCaggiano, AntonioKoenders, EddieDIFFUSIVE TRANSPORTMINERAL DISSOLUTIONMOVING BOUNDARY PROBLEMNUMERICAL SIMULATIONPHASE-FIELD (PF) METHODREACTION RATEhttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.Fil: Yang, Sha. Universitat Technische Darmstadt; AlemaniaFil: Ukrainczyk, Neven. Universitat Technische Darmstadt; AlemaniaFil: Caggiano, Antonio. Universitat Technische Darmstadt; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Koenders, Eddie. Universitat Technische Darmstadt; AlemaniaMDPI AG2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/173661Yang, Sha; Ukrainczyk, Neven; Caggiano, Antonio; Koenders, Eddie; Numerical phase-field model validation for dissolution of minerals; MDPI AG; Applied Sciences; 11; 6; 3-2021; 1-222076-3417CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/app11062464info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:35Zoai:ri.conicet.gov.ar:11336/173661instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:35.699CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Numerical phase-field model validation for dissolution of minerals
title Numerical phase-field model validation for dissolution of minerals
spellingShingle Numerical phase-field model validation for dissolution of minerals
Yang, Sha
DIFFUSIVE TRANSPORT
MINERAL DISSOLUTION
MOVING BOUNDARY PROBLEM
NUMERICAL SIMULATION
PHASE-FIELD (PF) METHOD
REACTION RATE
title_short Numerical phase-field model validation for dissolution of minerals
title_full Numerical phase-field model validation for dissolution of minerals
title_fullStr Numerical phase-field model validation for dissolution of minerals
title_full_unstemmed Numerical phase-field model validation for dissolution of minerals
title_sort Numerical phase-field model validation for dissolution of minerals
dc.creator.none.fl_str_mv Yang, Sha
Ukrainczyk, Neven
Caggiano, Antonio
Koenders, Eddie
author Yang, Sha
author_facet Yang, Sha
Ukrainczyk, Neven
Caggiano, Antonio
Koenders, Eddie
author_role author
author2 Ukrainczyk, Neven
Caggiano, Antonio
Koenders, Eddie
author2_role author
author
author
dc.subject.none.fl_str_mv DIFFUSIVE TRANSPORT
MINERAL DISSOLUTION
MOVING BOUNDARY PROBLEM
NUMERICAL SIMULATION
PHASE-FIELD (PF) METHOD
REACTION RATE
topic DIFFUSIVE TRANSPORT
MINERAL DISSOLUTION
MOVING BOUNDARY PROBLEM
NUMERICAL SIMULATION
PHASE-FIELD (PF) METHOD
REACTION RATE
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.1
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.
Fil: Yang, Sha. Universitat Technische Darmstadt; Alemania
Fil: Ukrainczyk, Neven. Universitat Technische Darmstadt; Alemania
Fil: Caggiano, Antonio. Universitat Technische Darmstadt; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Fil: Koenders, Eddie. Universitat Technische Darmstadt; Alemania
description Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.
publishDate 2021
dc.date.none.fl_str_mv 2021-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/173661
Yang, Sha; Ukrainczyk, Neven; Caggiano, Antonio; Koenders, Eddie; Numerical phase-field model validation for dissolution of minerals; MDPI AG; Applied Sciences; 11; 6; 3-2021; 1-22
2076-3417
CONICET Digital
CONICET
url http://hdl.handle.net/11336/173661
identifier_str_mv Yang, Sha; Ukrainczyk, Neven; Caggiano, Antonio; Koenders, Eddie; Numerical phase-field model validation for dissolution of minerals; MDPI AG; Applied Sciences; 11; 6; 3-2021; 1-22
2076-3417
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/app11062464
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269040374972416
score 13.13397