Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domai...

Autores
Fasce, Diana Patricia; Williams, Roberto Juan Jose; Matejka, Libor; Plestil, Josef; Brus, Jiri; Serrano, Berna; Cabanelas, Juan C.; Baselga, Juan
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The aim of this study was to investigate the changes produced in the nanostructures and the photoluminescence spectra of bridged silsesquioxanes containing urea or urethane groups, by varying the relative rates between the self-assembly of organic domains and the inorganic polycondensation. Precursors of the bridged silsesquioxanes were 4,4′-[1,3-phenylenebis(1- methylethylidene)]bis(aniline) and 4,4′-isopropylidenediphenol, end-capped with 3-isocyanatopropyltriethoxysilane. The inorganic polycondensation was produced using either high or low formic acid concentrations, leading to transparent films with different nanostructures as revealed by FTIR, SAXS, and 29Si NMR spectra. For the bridged silsesquioxanes containing urea groups the self-assembly of organic domains was much faster than the inorganic polycondensation for both formic acid concentrations. However, the arrangement was more regular and the short-range order higher when the rate of inorganic polycondensation was lower. The photoluminescence spectra of the most ordered structures revealed the presence of two main processes: radiative recombinations in inorganic clusters and photoinduced proton-transfer generating NH 2+ and N- defects and their subsequent radiative recombination. In the less-ordered urea-bridged silsesquioxanes a third process was present assigned to a photoinduced proton transfer in H-bonds exhibiting a broad range of strengths. For urethane-bridged silsesquioxanes the driving force for the self-assembly of organic bridges was lower than for urea-bridged silsesquioxanes. When the synthesis was performed with a high formic acid concentration, self-assembled structures were not produced. Instead, large inorganic domains composed of small inorganic clusters were generated. Self-assembly of organic domains took place only when employing low polycondensation rates. For both materials the photoluminescence was mainly due to radiative processes within inorganic clusters and varied significantly with their state of aggregation.
Fil: Fasce, Diana Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Williams, Roberto Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Matejka, Libor. Biology Centre of the Academy of Sciences of the Czech Republic; República Checa
Fil: Plestil, Josef. Biology Centre of the Academy of Sciences of the Czech Republic; República Checa
Fil: Brus, Jiri. Biology Centre of the Academy of Sciences of the Czech Republic; República Checa
Fil: Serrano, Berna. Universidad Carlos III de Madrid; España
Fil: Cabanelas, Juan C.. Universidad Carlos III de Madrid; España
Fil: Baselga, Juan. Universidad Carlos III de Madrid; España
Materia
Photoluminescence
Bridged Silsesquioxane
Urea
Urethane
Self-Assembly
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/86037

id CONICETDig_fcdefc5b819804923054b60374c51ea0
oai_identifier_str oai:ri.conicet.gov.ar:11336/86037
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensationFasce, Diana PatriciaWilliams, Roberto Juan JoseMatejka, LiborPlestil, JosefBrus, JiriSerrano, BernaCabanelas, Juan C.Baselga, JuanPhotoluminescenceBridged SilsesquioxaneUreaUrethaneSelf-Assemblyhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The aim of this study was to investigate the changes produced in the nanostructures and the photoluminescence spectra of bridged silsesquioxanes containing urea or urethane groups, by varying the relative rates between the self-assembly of organic domains and the inorganic polycondensation. Precursors of the bridged silsesquioxanes were 4,4′-[1,3-phenylenebis(1- methylethylidene)]bis(aniline) and 4,4′-isopropylidenediphenol, end-capped with 3-isocyanatopropyltriethoxysilane. The inorganic polycondensation was produced using either high or low formic acid concentrations, leading to transparent films with different nanostructures as revealed by FTIR, SAXS, and 29Si NMR spectra. For the bridged silsesquioxanes containing urea groups the self-assembly of organic domains was much faster than the inorganic polycondensation for both formic acid concentrations. However, the arrangement was more regular and the short-range order higher when the rate of inorganic polycondensation was lower. The photoluminescence spectra of the most ordered structures revealed the presence of two main processes: radiative recombinations in inorganic clusters and photoinduced proton-transfer generating NH 2+ and N- defects and their subsequent radiative recombination. In the less-ordered urea-bridged silsesquioxanes a third process was present assigned to a photoinduced proton transfer in H-bonds exhibiting a broad range of strengths. For urethane-bridged silsesquioxanes the driving force for the self-assembly of organic bridges was lower than for urea-bridged silsesquioxanes. When the synthesis was performed with a high formic acid concentration, self-assembled structures were not produced. Instead, large inorganic domains composed of small inorganic clusters were generated. Self-assembly of organic domains took place only when employing low polycondensation rates. For both materials the photoluminescence was mainly due to radiative processes within inorganic clusters and varied significantly with their state of aggregation.Fil: Fasce, Diana Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Williams, Roberto Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Matejka, Libor. Biology Centre of the Academy of Sciences of the Czech Republic; República ChecaFil: Plestil, Josef. Biology Centre of the Academy of Sciences of the Czech Republic; República ChecaFil: Brus, Jiri. Biology Centre of the Academy of Sciences of the Czech Republic; República ChecaFil: Serrano, Berna. Universidad Carlos III de Madrid; EspañaFil: Cabanelas, Juan C.. Universidad Carlos III de Madrid; EspañaFil: Baselga, Juan. Universidad Carlos III de Madrid; EspañaAmerican Chemical Society2006-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86037Fasce, Diana Patricia; Williams, Roberto Juan Jose; Matejka, Libor; Plestil, Josef; Brus, Jiri; et al.; Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensation; American Chemical Society; Macromolecules; 39; 11; 5-2006; 3794-38010024-9297CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ma052105yinfo:eu-repo/semantics/altIdentifier/doi/10.1021/ma052105yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:22:55Zoai:ri.conicet.gov.ar:11336/86037instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:22:56.062CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensation
title Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensation
spellingShingle Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensation
Fasce, Diana Patricia
Photoluminescence
Bridged Silsesquioxane
Urea
Urethane
Self-Assembly
title_short Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensation
title_full Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensation
title_fullStr Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensation
title_full_unstemmed Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensation
title_sort Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensation
dc.creator.none.fl_str_mv Fasce, Diana Patricia
Williams, Roberto Juan Jose
Matejka, Libor
Plestil, Josef
Brus, Jiri
Serrano, Berna
Cabanelas, Juan C.
Baselga, Juan
author Fasce, Diana Patricia
author_facet Fasce, Diana Patricia
Williams, Roberto Juan Jose
Matejka, Libor
Plestil, Josef
Brus, Jiri
Serrano, Berna
Cabanelas, Juan C.
Baselga, Juan
author_role author
author2 Williams, Roberto Juan Jose
Matejka, Libor
Plestil, Josef
Brus, Jiri
Serrano, Berna
Cabanelas, Juan C.
Baselga, Juan
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Photoluminescence
Bridged Silsesquioxane
Urea
Urethane
Self-Assembly
topic Photoluminescence
Bridged Silsesquioxane
Urea
Urethane
Self-Assembly
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The aim of this study was to investigate the changes produced in the nanostructures and the photoluminescence spectra of bridged silsesquioxanes containing urea or urethane groups, by varying the relative rates between the self-assembly of organic domains and the inorganic polycondensation. Precursors of the bridged silsesquioxanes were 4,4′-[1,3-phenylenebis(1- methylethylidene)]bis(aniline) and 4,4′-isopropylidenediphenol, end-capped with 3-isocyanatopropyltriethoxysilane. The inorganic polycondensation was produced using either high or low formic acid concentrations, leading to transparent films with different nanostructures as revealed by FTIR, SAXS, and 29Si NMR spectra. For the bridged silsesquioxanes containing urea groups the self-assembly of organic domains was much faster than the inorganic polycondensation for both formic acid concentrations. However, the arrangement was more regular and the short-range order higher when the rate of inorganic polycondensation was lower. The photoluminescence spectra of the most ordered structures revealed the presence of two main processes: radiative recombinations in inorganic clusters and photoinduced proton-transfer generating NH 2+ and N- defects and their subsequent radiative recombination. In the less-ordered urea-bridged silsesquioxanes a third process was present assigned to a photoinduced proton transfer in H-bonds exhibiting a broad range of strengths. For urethane-bridged silsesquioxanes the driving force for the self-assembly of organic bridges was lower than for urea-bridged silsesquioxanes. When the synthesis was performed with a high formic acid concentration, self-assembled structures were not produced. Instead, large inorganic domains composed of small inorganic clusters were generated. Self-assembly of organic domains took place only when employing low polycondensation rates. For both materials the photoluminescence was mainly due to radiative processes within inorganic clusters and varied significantly with their state of aggregation.
Fil: Fasce, Diana Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Williams, Roberto Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Matejka, Libor. Biology Centre of the Academy of Sciences of the Czech Republic; República Checa
Fil: Plestil, Josef. Biology Centre of the Academy of Sciences of the Czech Republic; República Checa
Fil: Brus, Jiri. Biology Centre of the Academy of Sciences of the Czech Republic; República Checa
Fil: Serrano, Berna. Universidad Carlos III de Madrid; España
Fil: Cabanelas, Juan C.. Universidad Carlos III de Madrid; España
Fil: Baselga, Juan. Universidad Carlos III de Madrid; España
description The aim of this study was to investigate the changes produced in the nanostructures and the photoluminescence spectra of bridged silsesquioxanes containing urea or urethane groups, by varying the relative rates between the self-assembly of organic domains and the inorganic polycondensation. Precursors of the bridged silsesquioxanes were 4,4′-[1,3-phenylenebis(1- methylethylidene)]bis(aniline) and 4,4′-isopropylidenediphenol, end-capped with 3-isocyanatopropyltriethoxysilane. The inorganic polycondensation was produced using either high or low formic acid concentrations, leading to transparent films with different nanostructures as revealed by FTIR, SAXS, and 29Si NMR spectra. For the bridged silsesquioxanes containing urea groups the self-assembly of organic domains was much faster than the inorganic polycondensation for both formic acid concentrations. However, the arrangement was more regular and the short-range order higher when the rate of inorganic polycondensation was lower. The photoluminescence spectra of the most ordered structures revealed the presence of two main processes: radiative recombinations in inorganic clusters and photoinduced proton-transfer generating NH 2+ and N- defects and their subsequent radiative recombination. In the less-ordered urea-bridged silsesquioxanes a third process was present assigned to a photoinduced proton transfer in H-bonds exhibiting a broad range of strengths. For urethane-bridged silsesquioxanes the driving force for the self-assembly of organic bridges was lower than for urea-bridged silsesquioxanes. When the synthesis was performed with a high formic acid concentration, self-assembled structures were not produced. Instead, large inorganic domains composed of small inorganic clusters were generated. Self-assembly of organic domains took place only when employing low polycondensation rates. For both materials the photoluminescence was mainly due to radiative processes within inorganic clusters and varied significantly with their state of aggregation.
publishDate 2006
dc.date.none.fl_str_mv 2006-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/86037
Fasce, Diana Patricia; Williams, Roberto Juan Jose; Matejka, Libor; Plestil, Josef; Brus, Jiri; et al.; Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensation; American Chemical Society; Macromolecules; 39; 11; 5-2006; 3794-3801
0024-9297
CONICET Digital
CONICET
url http://hdl.handle.net/11336/86037
identifier_str_mv Fasce, Diana Patricia; Williams, Roberto Juan Jose; Matejka, Libor; Plestil, Josef; Brus, Jiri; et al.; Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensation; American Chemical Society; Macromolecules; 39; 11; 5-2006; 3794-3801
0024-9297
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ma052105y
info:eu-repo/semantics/altIdentifier/doi/10.1021/ma052105y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083376284434432
score 13.22299