Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?
- Autores
- Fernández, Pablo S.; Gomes, Janaina F.; Angelucci, Camilo A.; Tereshchuk, Polina; Martins, Cauê A.; Camara, Giuseppe A.; Martins, María Elisa; Da Silva, Juarez L. F.; Tremiliosi Filho, Germano
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Glycerol (GlOH) accumulation and its very low price constitute a real problem for the biodiesel industry. To overcome these problems, it is imperative to find new GlOH applications. In this context,electrochemistry arises as an important alternativeto the production of energy or fine chemicals using GlOH as a reactant. To make these opportunities a reality, it is fundamentallynecessary to understand how the glycerol electro-oxidation reaction (GEOR) occurs on catalysts used in real systems.Thus, research using model surfaces generates the first insight into the electrochemistry of extremely complex real catalysts. Accordingly,in this work, we generate Pt(100) disturbed surfaces in a reproducible manner, carefully controlling the surface defectdensity. Then, GEOR is studied on well-ordered Pt(100) and on the disturbed Pt(100) surfaces in 0.5 M H2SO4 using cyclic voltammetry(CV) and in-situ Fourier transform infrared spectroscopy (FTIR). The CV profile of GEOR consists of a single peak in thepositive scan. The onset reaction displays the influence of defects present on the surface. On a surface with a high degree of disorder,the main GlOH oxidation process begins at 0.8 V vs. RHE, whereas for well-ordered Pt(100), it starts 0.1 V earlier. FTIR experimentsshow the presence of carbon monoxide and carbonyl absorption bands. The electrochemical and spectroelectrochemical results are supported by computational calculations (DFT) showing that both CO and GlOH bind more strongly on disturbed than well-ordered surfaces. Thus, our experiments show that Pt-CO (or other GlOH residue) bond breaking may be the GEOR rate determining step.
Fil: Fernández, Pablo S.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
Fil: Gomes, Janaina F.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
Fil: Angelucci, Camilo A.. Universidade Federal do ABC. Centro de Ciências Naturais e Humanas; Brasil
Fil: Tereshchuk, Polina. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
Fil: Martins, Cauê A.. Universidade Federal da Grandes Dourados; Brasil
Fil: Camara, Giuseppe A.. Universidade Federal Do Mato Grosso Do Sul; Brasil
Fil: Martins, María Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata; Argentina
Fil: Da Silva, Juarez L. F.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
Fil: Tremiliosi Filho, Germano. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil - Materia
-
GLYCEROL ELECTRO-OXIDATION REACTION
PLATINUM SINGLE CRYSTALS
DISORDERED SURFACES
IN SITU FTIR
DENSITY FUNCTIONAL THEORY. - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5073
Ver los metadatos del registro completo
id |
CONICETDig_fc35773f78292a1f4e797a9b260b9186 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5073 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?Fernández, Pablo S.Gomes, Janaina F. Angelucci, Camilo A.Tereshchuk, PolinaMartins, Cauê A.Camara, Giuseppe A.Martins, María ElisaDa Silva, Juarez L. F.Tremiliosi Filho, GermanoGLYCEROL ELECTRO-OXIDATION REACTIONPLATINUM SINGLE CRYSTALSDISORDERED SURFACESIN SITU FTIRDENSITY FUNCTIONAL THEORY.https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Glycerol (GlOH) accumulation and its very low price constitute a real problem for the biodiesel industry. To overcome these problems, it is imperative to find new GlOH applications. In this context,electrochemistry arises as an important alternativeto the production of energy or fine chemicals using GlOH as a reactant. To make these opportunities a reality, it is fundamentallynecessary to understand how the glycerol electro-oxidation reaction (GEOR) occurs on catalysts used in real systems.Thus, research using model surfaces generates the first insight into the electrochemistry of extremely complex real catalysts. Accordingly,in this work, we generate Pt(100) disturbed surfaces in a reproducible manner, carefully controlling the surface defectdensity. Then, GEOR is studied on well-ordered Pt(100) and on the disturbed Pt(100) surfaces in 0.5 M H2SO4 using cyclic voltammetry(CV) and in-situ Fourier transform infrared spectroscopy (FTIR). The CV profile of GEOR consists of a single peak in thepositive scan. The onset reaction displays the influence of defects present on the surface. On a surface with a high degree of disorder,the main GlOH oxidation process begins at 0.8 V vs. RHE, whereas for well-ordered Pt(100), it starts 0.1 V earlier. FTIR experimentsshow the presence of carbon monoxide and carbonyl absorption bands. The electrochemical and spectroelectrochemical results are supported by computational calculations (DFT) showing that both CO and GlOH bind more strongly on disturbed than well-ordered surfaces. Thus, our experiments show that Pt-CO (or other GlOH residue) bond breaking may be the GEOR rate determining step.Fil: Fernández, Pablo S.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; BrasilFil: Gomes, Janaina F.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; BrasilFil: Angelucci, Camilo A.. Universidade Federal do ABC. Centro de Ciências Naturais e Humanas; BrasilFil: Tereshchuk, Polina. Universidade de Sao Paulo. Instituto Química de Sao Carlos; BrasilFil: Martins, Cauê A.. Universidade Federal da Grandes Dourados; BrasilFil: Camara, Giuseppe A.. Universidade Federal Do Mato Grosso Do Sul; BrasilFil: Martins, María Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata; ArgentinaFil: Da Silva, Juarez L. F.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; BrasilFil: Tremiliosi Filho, Germano. Universidade de Sao Paulo. Instituto Química de Sao Carlos; BrasilAmerican Chemical Society2015-05info:eu-repo/date/embargoEnd/2016-06-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5073Fernández, Pablo S.; Gomes, Janaina F.; Angelucci, Camilo A.; Tereshchuk, Polina; Martins, Cauê A.; et al.; Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?; American Chemical Society; ACS Catalysis; 5; 7; 5-2015; 4227-42362155-5435enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acscatal.5b00451info:eu-repo/semantics/altIdentifier/doi/10.1021/acscatal.5b00451info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:07Zoai:ri.conicet.gov.ar:11336/5073instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:07.869CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol? |
title |
Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol? |
spellingShingle |
Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol? Fernández, Pablo S. GLYCEROL ELECTRO-OXIDATION REACTION PLATINUM SINGLE CRYSTALS DISORDERED SURFACES IN SITU FTIR DENSITY FUNCTIONAL THEORY. |
title_short |
Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol? |
title_full |
Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol? |
title_fullStr |
Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol? |
title_full_unstemmed |
Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol? |
title_sort |
Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol? |
dc.creator.none.fl_str_mv |
Fernández, Pablo S. Gomes, Janaina F. Angelucci, Camilo A. Tereshchuk, Polina Martins, Cauê A. Camara, Giuseppe A. Martins, María Elisa Da Silva, Juarez L. F. Tremiliosi Filho, Germano |
author |
Fernández, Pablo S. |
author_facet |
Fernández, Pablo S. Gomes, Janaina F. Angelucci, Camilo A. Tereshchuk, Polina Martins, Cauê A. Camara, Giuseppe A. Martins, María Elisa Da Silva, Juarez L. F. Tremiliosi Filho, Germano |
author_role |
author |
author2 |
Gomes, Janaina F. Angelucci, Camilo A. Tereshchuk, Polina Martins, Cauê A. Camara, Giuseppe A. Martins, María Elisa Da Silva, Juarez L. F. Tremiliosi Filho, Germano |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
GLYCEROL ELECTRO-OXIDATION REACTION PLATINUM SINGLE CRYSTALS DISORDERED SURFACES IN SITU FTIR DENSITY FUNCTIONAL THEORY. |
topic |
GLYCEROL ELECTRO-OXIDATION REACTION PLATINUM SINGLE CRYSTALS DISORDERED SURFACES IN SITU FTIR DENSITY FUNCTIONAL THEORY. |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Glycerol (GlOH) accumulation and its very low price constitute a real problem for the biodiesel industry. To overcome these problems, it is imperative to find new GlOH applications. In this context,electrochemistry arises as an important alternativeto the production of energy or fine chemicals using GlOH as a reactant. To make these opportunities a reality, it is fundamentallynecessary to understand how the glycerol electro-oxidation reaction (GEOR) occurs on catalysts used in real systems.Thus, research using model surfaces generates the first insight into the electrochemistry of extremely complex real catalysts. Accordingly,in this work, we generate Pt(100) disturbed surfaces in a reproducible manner, carefully controlling the surface defectdensity. Then, GEOR is studied on well-ordered Pt(100) and on the disturbed Pt(100) surfaces in 0.5 M H2SO4 using cyclic voltammetry(CV) and in-situ Fourier transform infrared spectroscopy (FTIR). The CV profile of GEOR consists of a single peak in thepositive scan. The onset reaction displays the influence of defects present on the surface. On a surface with a high degree of disorder,the main GlOH oxidation process begins at 0.8 V vs. RHE, whereas for well-ordered Pt(100), it starts 0.1 V earlier. FTIR experimentsshow the presence of carbon monoxide and carbonyl absorption bands. The electrochemical and spectroelectrochemical results are supported by computational calculations (DFT) showing that both CO and GlOH bind more strongly on disturbed than well-ordered surfaces. Thus, our experiments show that Pt-CO (or other GlOH residue) bond breaking may be the GEOR rate determining step. Fil: Fernández, Pablo S.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil Fil: Gomes, Janaina F.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil Fil: Angelucci, Camilo A.. Universidade Federal do ABC. Centro de Ciências Naturais e Humanas; Brasil Fil: Tereshchuk, Polina. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil Fil: Martins, Cauê A.. Universidade Federal da Grandes Dourados; Brasil Fil: Camara, Giuseppe A.. Universidade Federal Do Mato Grosso Do Sul; Brasil Fil: Martins, María Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata; Argentina Fil: Da Silva, Juarez L. F.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil Fil: Tremiliosi Filho, Germano. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil |
description |
Glycerol (GlOH) accumulation and its very low price constitute a real problem for the biodiesel industry. To overcome these problems, it is imperative to find new GlOH applications. In this context,electrochemistry arises as an important alternativeto the production of energy or fine chemicals using GlOH as a reactant. To make these opportunities a reality, it is fundamentallynecessary to understand how the glycerol electro-oxidation reaction (GEOR) occurs on catalysts used in real systems.Thus, research using model surfaces generates the first insight into the electrochemistry of extremely complex real catalysts. Accordingly,in this work, we generate Pt(100) disturbed surfaces in a reproducible manner, carefully controlling the surface defectdensity. Then, GEOR is studied on well-ordered Pt(100) and on the disturbed Pt(100) surfaces in 0.5 M H2SO4 using cyclic voltammetry(CV) and in-situ Fourier transform infrared spectroscopy (FTIR). The CV profile of GEOR consists of a single peak in thepositive scan. The onset reaction displays the influence of defects present on the surface. On a surface with a high degree of disorder,the main GlOH oxidation process begins at 0.8 V vs. RHE, whereas for well-ordered Pt(100), it starts 0.1 V earlier. FTIR experimentsshow the presence of carbon monoxide and carbonyl absorption bands. The electrochemical and spectroelectrochemical results are supported by computational calculations (DFT) showing that both CO and GlOH bind more strongly on disturbed than well-ordered surfaces. Thus, our experiments show that Pt-CO (or other GlOH residue) bond breaking may be the GEOR rate determining step. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 info:eu-repo/date/embargoEnd/2016-06-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5073 Fernández, Pablo S.; Gomes, Janaina F.; Angelucci, Camilo A.; Tereshchuk, Polina; Martins, Cauê A.; et al.; Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?; American Chemical Society; ACS Catalysis; 5; 7; 5-2015; 4227-4236 2155-5435 |
url |
http://hdl.handle.net/11336/5073 |
identifier_str_mv |
Fernández, Pablo S.; Gomes, Janaina F.; Angelucci, Camilo A.; Tereshchuk, Polina; Martins, Cauê A.; et al.; Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?; American Chemical Society; ACS Catalysis; 5; 7; 5-2015; 4227-4236 2155-5435 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acscatal.5b00451 info:eu-repo/semantics/altIdentifier/doi/10.1021/acscatal.5b00451 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613237285322752 |
score |
13.070432 |