Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?

Autores
Fernández, Pablo S.; Gomes, Janaina F.; Angelucci, Camilo A.; Tereshchuk, Polina; Martins, Cauê A.; Camara, Giuseppe A.; Martins, María Elisa; Da Silva, Juarez L. F.; Tremiliosi Filho, Germano
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Glycerol (GlOH) accumulation and its very low price constitute a real problem for the biodiesel industry. To overcome these problems, it is imperative to find new GlOH applications. In this context,electrochemistry arises as an important alternativeto the production of energy or fine chemicals using GlOH as a reactant. To make these opportunities a reality, it is fundamentallynecessary to understand how the glycerol electro-oxidation reaction (GEOR) occurs on catalysts used in real systems.Thus, research using model surfaces generates the first insight into the electrochemistry of extremely complex real catalysts. Accordingly,in this work, we generate Pt(100) disturbed surfaces in a reproducible manner, carefully controlling the surface defectdensity. Then, GEOR is studied on well-ordered Pt(100) and on the disturbed Pt(100) surfaces in 0.5 M H2SO4 using cyclic voltammetry(CV) and in-situ Fourier transform infrared spectroscopy (FTIR). The CV profile of GEOR consists of a single peak in thepositive scan. The onset reaction displays the influence of defects present on the surface. On a surface with a high degree of disorder,the main GlOH oxidation process begins at 0.8 V vs. RHE, whereas for well-ordered Pt(100), it starts 0.1 V earlier. FTIR experimentsshow the presence of carbon monoxide and carbonyl absorption bands. The electrochemical and spectroelectrochemical results are supported by computational calculations (DFT) showing that both CO and GlOH bind more strongly on disturbed than well-ordered surfaces. Thus, our experiments show that Pt-CO (or other GlOH residue) bond breaking may be the GEOR rate determining step.
Fil: Fernández, Pablo S.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
Fil: Gomes, Janaina F.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
Fil: Angelucci, Camilo A.. Universidade Federal do ABC. Centro de Ciências Naturais e Humanas; Brasil
Fil: Tereshchuk, Polina. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
Fil: Martins, Cauê A.. Universidade Federal da Grandes Dourados; Brasil
Fil: Camara, Giuseppe A.. Universidade Federal Do Mato Grosso Do Sul; Brasil
Fil: Martins, María Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata; Argentina
Fil: Da Silva, Juarez L. F.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
Fil: Tremiliosi Filho, Germano. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
Materia
GLYCEROL ELECTRO-OXIDATION REACTION
PLATINUM SINGLE CRYSTALS
DISORDERED SURFACES
IN SITU FTIR
DENSITY FUNCTIONAL THEORY.
Nivel de accesibilidad
acceso embargado
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5073

id CONICETDig_fc35773f78292a1f4e797a9b260b9186
oai_identifier_str oai:ri.conicet.gov.ar:11336/5073
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?Fernández, Pablo S.Gomes, Janaina F. Angelucci, Camilo A.Tereshchuk, PolinaMartins, Cauê A.Camara, Giuseppe A.Martins, María ElisaDa Silva, Juarez L. F.Tremiliosi Filho, GermanoGLYCEROL ELECTRO-OXIDATION REACTIONPLATINUM SINGLE CRYSTALSDISORDERED SURFACESIN SITU FTIRDENSITY FUNCTIONAL THEORY.https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Glycerol (GlOH) accumulation and its very low price constitute a real problem for the biodiesel industry. To overcome these problems, it is imperative to find new GlOH applications. In this context,electrochemistry arises as an important alternativeto the production of energy or fine chemicals using GlOH as a reactant. To make these opportunities a reality, it is fundamentallynecessary to understand how the glycerol electro-oxidation reaction (GEOR) occurs on catalysts used in real systems.Thus, research using model surfaces generates the first insight into the electrochemistry of extremely complex real catalysts. Accordingly,in this work, we generate Pt(100) disturbed surfaces in a reproducible manner, carefully controlling the surface defectdensity. Then, GEOR is studied on well-ordered Pt(100) and on the disturbed Pt(100) surfaces in 0.5 M H2SO4 using cyclic voltammetry(CV) and in-situ Fourier transform infrared spectroscopy (FTIR). The CV profile of GEOR consists of a single peak in thepositive scan. The onset reaction displays the influence of defects present on the surface. On a surface with a high degree of disorder,the main GlOH oxidation process begins at 0.8 V vs. RHE, whereas for well-ordered Pt(100), it starts 0.1 V earlier. FTIR experimentsshow the presence of carbon monoxide and carbonyl absorption bands. The electrochemical and spectroelectrochemical results are supported by computational calculations (DFT) showing that both CO and GlOH bind more strongly on disturbed than well-ordered surfaces. Thus, our experiments show that Pt-CO (or other GlOH residue) bond breaking may be the GEOR rate determining step.Fil: Fernández, Pablo S.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; BrasilFil: Gomes, Janaina F.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; BrasilFil: Angelucci, Camilo A.. Universidade Federal do ABC. Centro de Ciências Naturais e Humanas; BrasilFil: Tereshchuk, Polina. Universidade de Sao Paulo. Instituto Química de Sao Carlos; BrasilFil: Martins, Cauê A.. Universidade Federal da Grandes Dourados; BrasilFil: Camara, Giuseppe A.. Universidade Federal Do Mato Grosso Do Sul; BrasilFil: Martins, María Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata; ArgentinaFil: Da Silva, Juarez L. F.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; BrasilFil: Tremiliosi Filho, Germano. Universidade de Sao Paulo. Instituto Química de Sao Carlos; BrasilAmerican Chemical Society2015-05info:eu-repo/date/embargoEnd/2016-06-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5073Fernández, Pablo S.; Gomes, Janaina F.; Angelucci, Camilo A.; Tereshchuk, Polina; Martins, Cauê A.; et al.; Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?; American Chemical Society; ACS Catalysis; 5; 7; 5-2015; 4227-42362155-5435enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acscatal.5b00451info:eu-repo/semantics/altIdentifier/doi/10.1021/acscatal.5b00451info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:07Zoai:ri.conicet.gov.ar:11336/5073instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:07.869CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?
title Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?
spellingShingle Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?
Fernández, Pablo S.
GLYCEROL ELECTRO-OXIDATION REACTION
PLATINUM SINGLE CRYSTALS
DISORDERED SURFACES
IN SITU FTIR
DENSITY FUNCTIONAL THEORY.
title_short Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?
title_full Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?
title_fullStr Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?
title_full_unstemmed Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?
title_sort Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?
dc.creator.none.fl_str_mv Fernández, Pablo S.
Gomes, Janaina F.
Angelucci, Camilo A.
Tereshchuk, Polina
Martins, Cauê A.
Camara, Giuseppe A.
Martins, María Elisa
Da Silva, Juarez L. F.
Tremiliosi Filho, Germano
author Fernández, Pablo S.
author_facet Fernández, Pablo S.
Gomes, Janaina F.
Angelucci, Camilo A.
Tereshchuk, Polina
Martins, Cauê A.
Camara, Giuseppe A.
Martins, María Elisa
Da Silva, Juarez L. F.
Tremiliosi Filho, Germano
author_role author
author2 Gomes, Janaina F.
Angelucci, Camilo A.
Tereshchuk, Polina
Martins, Cauê A.
Camara, Giuseppe A.
Martins, María Elisa
Da Silva, Juarez L. F.
Tremiliosi Filho, Germano
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv GLYCEROL ELECTRO-OXIDATION REACTION
PLATINUM SINGLE CRYSTALS
DISORDERED SURFACES
IN SITU FTIR
DENSITY FUNCTIONAL THEORY.
topic GLYCEROL ELECTRO-OXIDATION REACTION
PLATINUM SINGLE CRYSTALS
DISORDERED SURFACES
IN SITU FTIR
DENSITY FUNCTIONAL THEORY.
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Glycerol (GlOH) accumulation and its very low price constitute a real problem for the biodiesel industry. To overcome these problems, it is imperative to find new GlOH applications. In this context,electrochemistry arises as an important alternativeto the production of energy or fine chemicals using GlOH as a reactant. To make these opportunities a reality, it is fundamentallynecessary to understand how the glycerol electro-oxidation reaction (GEOR) occurs on catalysts used in real systems.Thus, research using model surfaces generates the first insight into the electrochemistry of extremely complex real catalysts. Accordingly,in this work, we generate Pt(100) disturbed surfaces in a reproducible manner, carefully controlling the surface defectdensity. Then, GEOR is studied on well-ordered Pt(100) and on the disturbed Pt(100) surfaces in 0.5 M H2SO4 using cyclic voltammetry(CV) and in-situ Fourier transform infrared spectroscopy (FTIR). The CV profile of GEOR consists of a single peak in thepositive scan. The onset reaction displays the influence of defects present on the surface. On a surface with a high degree of disorder,the main GlOH oxidation process begins at 0.8 V vs. RHE, whereas for well-ordered Pt(100), it starts 0.1 V earlier. FTIR experimentsshow the presence of carbon monoxide and carbonyl absorption bands. The electrochemical and spectroelectrochemical results are supported by computational calculations (DFT) showing that both CO and GlOH bind more strongly on disturbed than well-ordered surfaces. Thus, our experiments show that Pt-CO (or other GlOH residue) bond breaking may be the GEOR rate determining step.
Fil: Fernández, Pablo S.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
Fil: Gomes, Janaina F.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
Fil: Angelucci, Camilo A.. Universidade Federal do ABC. Centro de Ciências Naturais e Humanas; Brasil
Fil: Tereshchuk, Polina. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
Fil: Martins, Cauê A.. Universidade Federal da Grandes Dourados; Brasil
Fil: Camara, Giuseppe A.. Universidade Federal Do Mato Grosso Do Sul; Brasil
Fil: Martins, María Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata; Argentina
Fil: Da Silva, Juarez L. F.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
Fil: Tremiliosi Filho, Germano. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
description Glycerol (GlOH) accumulation and its very low price constitute a real problem for the biodiesel industry. To overcome these problems, it is imperative to find new GlOH applications. In this context,electrochemistry arises as an important alternativeto the production of energy or fine chemicals using GlOH as a reactant. To make these opportunities a reality, it is fundamentallynecessary to understand how the glycerol electro-oxidation reaction (GEOR) occurs on catalysts used in real systems.Thus, research using model surfaces generates the first insight into the electrochemistry of extremely complex real catalysts. Accordingly,in this work, we generate Pt(100) disturbed surfaces in a reproducible manner, carefully controlling the surface defectdensity. Then, GEOR is studied on well-ordered Pt(100) and on the disturbed Pt(100) surfaces in 0.5 M H2SO4 using cyclic voltammetry(CV) and in-situ Fourier transform infrared spectroscopy (FTIR). The CV profile of GEOR consists of a single peak in thepositive scan. The onset reaction displays the influence of defects present on the surface. On a surface with a high degree of disorder,the main GlOH oxidation process begins at 0.8 V vs. RHE, whereas for well-ordered Pt(100), it starts 0.1 V earlier. FTIR experimentsshow the presence of carbon monoxide and carbonyl absorption bands. The electrochemical and spectroelectrochemical results are supported by computational calculations (DFT) showing that both CO and GlOH bind more strongly on disturbed than well-ordered surfaces. Thus, our experiments show that Pt-CO (or other GlOH residue) bond breaking may be the GEOR rate determining step.
publishDate 2015
dc.date.none.fl_str_mv 2015-05
info:eu-repo/date/embargoEnd/2016-06-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5073
Fernández, Pablo S.; Gomes, Janaina F.; Angelucci, Camilo A.; Tereshchuk, Polina; Martins, Cauê A.; et al.; Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?; American Chemical Society; ACS Catalysis; 5; 7; 5-2015; 4227-4236
2155-5435
url http://hdl.handle.net/11336/5073
identifier_str_mv Fernández, Pablo S.; Gomes, Janaina F.; Angelucci, Camilo A.; Tereshchuk, Polina; Martins, Cauê A.; et al.; Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?; American Chemical Society; ACS Catalysis; 5; 7; 5-2015; 4227-4236
2155-5435
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acscatal.5b00451
info:eu-repo/semantics/altIdentifier/doi/10.1021/acscatal.5b00451
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613237285322752
score 13.070432