Hot air and microwave combined drying of potato monitored by infrared thermography
- Autores
- Tomas Egea, Juan Ángel; Traffano Schiffo, Maria Victoria; Castro Giraldez, Marta; Fito Suñer, Pedro Jose
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Hot air drying (HAD) at temperatures below the spontaneous evaporation temperature could be combined with microwave (MW) radiation as a thermal energy source in order to reduce the drying time. A photon flux in the microwave range interacts with dipolar molecules (water) through orientation and induction, producing electrical energy storage and thermal energy accumulation and generating an increase in the internal energy of food. The different mechanisms involved in water transport could change when the microwave penetration depth exceeds the sample characteristic dimension of mass transport. The aim of this paper is to determine the effect of MW in the combined HAD-MW drying of raw potato in order to obtain the real driving forces and mechanisms involved in the water transport, with the purpose of optimizing the MW power used. For this purpose, combined drying was carried out on potato samples (0, 4 and 6 W/g). The sample surface temperature was monitored by infrared thermography, and the sample mass was measured continuously through a precision balance. In parallel with continuous drying, another drying treatment was performed at different times (20, 40, 60, 90, 120, 180, 420 min) and conditions (0, 4 and 6 W/g) to analyze the dielectric properties, mass, moisture, volume and water activity. The results show that it is possible to monitor combined drying by infrared thermography, and it can be concluded that the convection heating is mostly transformed into surface water evaporation, with negligible thermal conduction from the surface, and microwave radiation is mostly transformed into an increase in the potato’s internal energy.
Fil: Tomas Egea, Juan Ángel. Universidad Politecnica de Valencia. Instituto Universitario de Ingeniería de Alimentos Para El Desarrollo.; España
Fil: Traffano Schiffo, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Castro Giraldez, Marta. Universidad Politecnica de Valencia. Instituto Universitario de Ingeniería de Alimentos Para El Desarrollo.; España
Fil: Fito Suñer, Pedro Jose. Universidad Politecnica de Valencia. Instituto Universitario de Ingeniería de Alimentos Para El Desarrollo.; España - Materia
-
DRYING
HOT AIR DRYING
MICROWAVE DRYING
INFRARED THERMOGRAPHY
WATER TRANSPORT
COMBINED DRYING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/150768
Ver los metadatos del registro completo
id |
CONICETDig_fb9ee34d65388fb12ef9aea4c48a5cc9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/150768 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hot air and microwave combined drying of potato monitored by infrared thermographyTomas Egea, Juan ÁngelTraffano Schiffo, Maria VictoriaCastro Giraldez, MartaFito Suñer, Pedro JoseDRYINGHOT AIR DRYINGMICROWAVE DRYINGINFRARED THERMOGRAPHYWATER TRANSPORTCOMBINED DRYINGhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Hot air drying (HAD) at temperatures below the spontaneous evaporation temperature could be combined with microwave (MW) radiation as a thermal energy source in order to reduce the drying time. A photon flux in the microwave range interacts with dipolar molecules (water) through orientation and induction, producing electrical energy storage and thermal energy accumulation and generating an increase in the internal energy of food. The different mechanisms involved in water transport could change when the microwave penetration depth exceeds the sample characteristic dimension of mass transport. The aim of this paper is to determine the effect of MW in the combined HAD-MW drying of raw potato in order to obtain the real driving forces and mechanisms involved in the water transport, with the purpose of optimizing the MW power used. For this purpose, combined drying was carried out on potato samples (0, 4 and 6 W/g). The sample surface temperature was monitored by infrared thermography, and the sample mass was measured continuously through a precision balance. In parallel with continuous drying, another drying treatment was performed at different times (20, 40, 60, 90, 120, 180, 420 min) and conditions (0, 4 and 6 W/g) to analyze the dielectric properties, mass, moisture, volume and water activity. The results show that it is possible to monitor combined drying by infrared thermography, and it can be concluded that the convection heating is mostly transformed into surface water evaporation, with negligible thermal conduction from the surface, and microwave radiation is mostly transformed into an increase in the potato’s internal energy.Fil: Tomas Egea, Juan Ángel. Universidad Politecnica de Valencia. Instituto Universitario de Ingeniería de Alimentos Para El Desarrollo.; EspañaFil: Traffano Schiffo, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Castro Giraldez, Marta. Universidad Politecnica de Valencia. Instituto Universitario de Ingeniería de Alimentos Para El Desarrollo.; EspañaFil: Fito Suñer, Pedro Jose. Universidad Politecnica de Valencia. Instituto Universitario de Ingeniería de Alimentos Para El Desarrollo.; EspañaMultidisciplinary Digital Publishing Institute2021-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/150768Tomas Egea, Juan Ángel; Traffano Schiffo, Maria Victoria; Castro Giraldez, Marta; Fito Suñer, Pedro Jose; Hot air and microwave combined drying of potato monitored by infrared thermography; Multidisciplinary Digital Publishing Institute; Applied Sciences; 11; 4; 2-2021; 1-122076-3417CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/11/4/1730info:eu-repo/semantics/altIdentifier/doi/10.3390/app11041730info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:54Zoai:ri.conicet.gov.ar:11336/150768instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:54.761CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hot air and microwave combined drying of potato monitored by infrared thermography |
title |
Hot air and microwave combined drying of potato monitored by infrared thermography |
spellingShingle |
Hot air and microwave combined drying of potato monitored by infrared thermography Tomas Egea, Juan Ángel DRYING HOT AIR DRYING MICROWAVE DRYING INFRARED THERMOGRAPHY WATER TRANSPORT COMBINED DRYING |
title_short |
Hot air and microwave combined drying of potato monitored by infrared thermography |
title_full |
Hot air and microwave combined drying of potato monitored by infrared thermography |
title_fullStr |
Hot air and microwave combined drying of potato monitored by infrared thermography |
title_full_unstemmed |
Hot air and microwave combined drying of potato monitored by infrared thermography |
title_sort |
Hot air and microwave combined drying of potato monitored by infrared thermography |
dc.creator.none.fl_str_mv |
Tomas Egea, Juan Ángel Traffano Schiffo, Maria Victoria Castro Giraldez, Marta Fito Suñer, Pedro Jose |
author |
Tomas Egea, Juan Ángel |
author_facet |
Tomas Egea, Juan Ángel Traffano Schiffo, Maria Victoria Castro Giraldez, Marta Fito Suñer, Pedro Jose |
author_role |
author |
author2 |
Traffano Schiffo, Maria Victoria Castro Giraldez, Marta Fito Suñer, Pedro Jose |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DRYING HOT AIR DRYING MICROWAVE DRYING INFRARED THERMOGRAPHY WATER TRANSPORT COMBINED DRYING |
topic |
DRYING HOT AIR DRYING MICROWAVE DRYING INFRARED THERMOGRAPHY WATER TRANSPORT COMBINED DRYING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Hot air drying (HAD) at temperatures below the spontaneous evaporation temperature could be combined with microwave (MW) radiation as a thermal energy source in order to reduce the drying time. A photon flux in the microwave range interacts with dipolar molecules (water) through orientation and induction, producing electrical energy storage and thermal energy accumulation and generating an increase in the internal energy of food. The different mechanisms involved in water transport could change when the microwave penetration depth exceeds the sample characteristic dimension of mass transport. The aim of this paper is to determine the effect of MW in the combined HAD-MW drying of raw potato in order to obtain the real driving forces and mechanisms involved in the water transport, with the purpose of optimizing the MW power used. For this purpose, combined drying was carried out on potato samples (0, 4 and 6 W/g). The sample surface temperature was monitored by infrared thermography, and the sample mass was measured continuously through a precision balance. In parallel with continuous drying, another drying treatment was performed at different times (20, 40, 60, 90, 120, 180, 420 min) and conditions (0, 4 and 6 W/g) to analyze the dielectric properties, mass, moisture, volume and water activity. The results show that it is possible to monitor combined drying by infrared thermography, and it can be concluded that the convection heating is mostly transformed into surface water evaporation, with negligible thermal conduction from the surface, and microwave radiation is mostly transformed into an increase in the potato’s internal energy. Fil: Tomas Egea, Juan Ángel. Universidad Politecnica de Valencia. Instituto Universitario de Ingeniería de Alimentos Para El Desarrollo.; España Fil: Traffano Schiffo, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Castro Giraldez, Marta. Universidad Politecnica de Valencia. Instituto Universitario de Ingeniería de Alimentos Para El Desarrollo.; España Fil: Fito Suñer, Pedro Jose. Universidad Politecnica de Valencia. Instituto Universitario de Ingeniería de Alimentos Para El Desarrollo.; España |
description |
Hot air drying (HAD) at temperatures below the spontaneous evaporation temperature could be combined with microwave (MW) radiation as a thermal energy source in order to reduce the drying time. A photon flux in the microwave range interacts with dipolar molecules (water) through orientation and induction, producing electrical energy storage and thermal energy accumulation and generating an increase in the internal energy of food. The different mechanisms involved in water transport could change when the microwave penetration depth exceeds the sample characteristic dimension of mass transport. The aim of this paper is to determine the effect of MW in the combined HAD-MW drying of raw potato in order to obtain the real driving forces and mechanisms involved in the water transport, with the purpose of optimizing the MW power used. For this purpose, combined drying was carried out on potato samples (0, 4 and 6 W/g). The sample surface temperature was monitored by infrared thermography, and the sample mass was measured continuously through a precision balance. In parallel with continuous drying, another drying treatment was performed at different times (20, 40, 60, 90, 120, 180, 420 min) and conditions (0, 4 and 6 W/g) to analyze the dielectric properties, mass, moisture, volume and water activity. The results show that it is possible to monitor combined drying by infrared thermography, and it can be concluded that the convection heating is mostly transformed into surface water evaporation, with negligible thermal conduction from the surface, and microwave radiation is mostly transformed into an increase in the potato’s internal energy. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/150768 Tomas Egea, Juan Ángel; Traffano Schiffo, Maria Victoria; Castro Giraldez, Marta; Fito Suñer, Pedro Jose; Hot air and microwave combined drying of potato monitored by infrared thermography; Multidisciplinary Digital Publishing Institute; Applied Sciences; 11; 4; 2-2021; 1-12 2076-3417 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/150768 |
identifier_str_mv |
Tomas Egea, Juan Ángel; Traffano Schiffo, Maria Victoria; Castro Giraldez, Marta; Fito Suñer, Pedro Jose; Hot air and microwave combined drying of potato monitored by infrared thermography; Multidisciplinary Digital Publishing Institute; Applied Sciences; 11; 4; 2-2021; 1-12 2076-3417 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/11/4/1730 info:eu-repo/semantics/altIdentifier/doi/10.3390/app11041730 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614258837422080 |
score |
13.070432 |