Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons
- Autores
- Pozo Lopez, Gabriela del Valle; Condo, Adriana Maria; Fabietti, Luis Maria Rodolfo; Winkler, Elin Lilian; Haberkorn, Nestor Fabian; Urreta, Silvia Elena
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Stoichiometric Ni2MnGa alloys are processed by two rapid solidification techniques – single-roller (SR) and twin-roller (TR) melt spinning – and the resulting microstructures and magnetic properties determined. Samples processed at tangential wheel speeds of 10 m/s (V10) and 15 m/s (V15) are studied in the as-cast condition to analyze the influence of the production methods on the microstructure. Important aspects like the resulting phases, their crystallographic texture, magnetic properties, martensitic transformation temperatures and Curie temperatures are compared. In addition, the magnetization mechanism involving twin boundary motion is explored. Our results indicate that the TR method provides lower cooling rates, thicker samples, higher internal stresses and larger MnS precipitates. However, the quenching rate is mainly determined by the tangential wheel velocity. TR samples also exhibit [100] texture normal to the ribbon plane but in a lesser extent than SR ribbons. Martensitic transformation temperatures are higher in samples V15 (~ 150 K) than in V10 (~ 100 K), with no clear difference between the SR and TR modes. This behavior is explained by considering distinct degrees of disorder in the L21 austenite phase resulting from quenching. The hysteresis of the transformation, defined as the difference Af − MS, takes similar values in the four samples analyzed. Pre-martensitic transformation temperatures are also slightly higher in samples V15, (230 ± 3) K, than in samples V10, (222 ± 3) K, as the magnitude of the Hopkinson effect, in good agreement with a higher residual stress level in TR ribbons. In the martensitic state, all ribbons exhibit hysteresis loops characteristic of a magnetization mechanism involving twin boundary motion. The switching magnetic fields for the onset of Type I twin boundary motion result between 220 mT and 365 mT, values equivalent to twinning stresses of about 1 MPa. It is concluded that both procedures, SR and TR melt spinning, provide microstructures favoring magnetic field induced twin variant reorientation.
Fil: Pozo Lopez, Gabriela del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Condo, Adriana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Fabietti, Luis Maria Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Winkler, Elin Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Haberkorn, Nestor Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Urreta, Silvia Elena. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
Magnetic Properties
Martensitic Transformation
Microstructure
Rapid Solidification
Shape&Ndash;Memory Alloys
Transmission Electron Microscopy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59284
Ver los metadatos del registro completo
id |
CONICETDig_fb59553a74a7d9ef014be0b0b4e87cc6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59284 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbonsPozo Lopez, Gabriela del ValleCondo, Adriana MariaFabietti, Luis Maria RodolfoWinkler, Elin LilianHaberkorn, Nestor FabianUrreta, Silvia ElenaMagnetic PropertiesMartensitic TransformationMicrostructureRapid SolidificationShape&Ndash;Memory AlloysTransmission Electron Microscopyhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Stoichiometric Ni2MnGa alloys are processed by two rapid solidification techniques – single-roller (SR) and twin-roller (TR) melt spinning – and the resulting microstructures and magnetic properties determined. Samples processed at tangential wheel speeds of 10 m/s (V10) and 15 m/s (V15) are studied in the as-cast condition to analyze the influence of the production methods on the microstructure. Important aspects like the resulting phases, their crystallographic texture, magnetic properties, martensitic transformation temperatures and Curie temperatures are compared. In addition, the magnetization mechanism involving twin boundary motion is explored. Our results indicate that the TR method provides lower cooling rates, thicker samples, higher internal stresses and larger MnS precipitates. However, the quenching rate is mainly determined by the tangential wheel velocity. TR samples also exhibit [100] texture normal to the ribbon plane but in a lesser extent than SR ribbons. Martensitic transformation temperatures are higher in samples V15 (~ 150 K) than in V10 (~ 100 K), with no clear difference between the SR and TR modes. This behavior is explained by considering distinct degrees of disorder in the L21 austenite phase resulting from quenching. The hysteresis of the transformation, defined as the difference Af − MS, takes similar values in the four samples analyzed. Pre-martensitic transformation temperatures are also slightly higher in samples V15, (230 ± 3) K, than in samples V10, (222 ± 3) K, as the magnitude of the Hopkinson effect, in good agreement with a higher residual stress level in TR ribbons. In the martensitic state, all ribbons exhibit hysteresis loops characteristic of a magnetization mechanism involving twin boundary motion. The switching magnetic fields for the onset of Type I twin boundary motion result between 220 mT and 365 mT, values equivalent to twinning stresses of about 1 MPa. It is concluded that both procedures, SR and TR melt spinning, provide microstructures favoring magnetic field induced twin variant reorientation.Fil: Pozo Lopez, Gabriela del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Condo, Adriana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Fabietti, Luis Maria Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Winkler, Elin Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Haberkorn, Nestor Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Urreta, Silvia Elena. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaElsevier Science Inc2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59284Pozo Lopez, Gabriela del Valle; Condo, Adriana Maria; Fabietti, Luis Maria Rodolfo; Winkler, Elin Lilian; Haberkorn, Nestor Fabian; et al.; Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons; Elsevier Science Inc; Materials Characterization; 124; 2-2017; 171-1811044-5803CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.matchar.2016.12.020info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1044580316309822info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:26Zoai:ri.conicet.gov.ar:11336/59284instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:26.762CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons |
title |
Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons |
spellingShingle |
Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons Pozo Lopez, Gabriela del Valle Magnetic Properties Martensitic Transformation Microstructure Rapid Solidification Shape&Ndash;Memory Alloys Transmission Electron Microscopy |
title_short |
Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons |
title_full |
Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons |
title_fullStr |
Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons |
title_full_unstemmed |
Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons |
title_sort |
Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons |
dc.creator.none.fl_str_mv |
Pozo Lopez, Gabriela del Valle Condo, Adriana Maria Fabietti, Luis Maria Rodolfo Winkler, Elin Lilian Haberkorn, Nestor Fabian Urreta, Silvia Elena |
author |
Pozo Lopez, Gabriela del Valle |
author_facet |
Pozo Lopez, Gabriela del Valle Condo, Adriana Maria Fabietti, Luis Maria Rodolfo Winkler, Elin Lilian Haberkorn, Nestor Fabian Urreta, Silvia Elena |
author_role |
author |
author2 |
Condo, Adriana Maria Fabietti, Luis Maria Rodolfo Winkler, Elin Lilian Haberkorn, Nestor Fabian Urreta, Silvia Elena |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Magnetic Properties Martensitic Transformation Microstructure Rapid Solidification Shape&Ndash;Memory Alloys Transmission Electron Microscopy |
topic |
Magnetic Properties Martensitic Transformation Microstructure Rapid Solidification Shape&Ndash;Memory Alloys Transmission Electron Microscopy |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Stoichiometric Ni2MnGa alloys are processed by two rapid solidification techniques – single-roller (SR) and twin-roller (TR) melt spinning – and the resulting microstructures and magnetic properties determined. Samples processed at tangential wheel speeds of 10 m/s (V10) and 15 m/s (V15) are studied in the as-cast condition to analyze the influence of the production methods on the microstructure. Important aspects like the resulting phases, their crystallographic texture, magnetic properties, martensitic transformation temperatures and Curie temperatures are compared. In addition, the magnetization mechanism involving twin boundary motion is explored. Our results indicate that the TR method provides lower cooling rates, thicker samples, higher internal stresses and larger MnS precipitates. However, the quenching rate is mainly determined by the tangential wheel velocity. TR samples also exhibit [100] texture normal to the ribbon plane but in a lesser extent than SR ribbons. Martensitic transformation temperatures are higher in samples V15 (~ 150 K) than in V10 (~ 100 K), with no clear difference between the SR and TR modes. This behavior is explained by considering distinct degrees of disorder in the L21 austenite phase resulting from quenching. The hysteresis of the transformation, defined as the difference Af − MS, takes similar values in the four samples analyzed. Pre-martensitic transformation temperatures are also slightly higher in samples V15, (230 ± 3) K, than in samples V10, (222 ± 3) K, as the magnitude of the Hopkinson effect, in good agreement with a higher residual stress level in TR ribbons. In the martensitic state, all ribbons exhibit hysteresis loops characteristic of a magnetization mechanism involving twin boundary motion. The switching magnetic fields for the onset of Type I twin boundary motion result between 220 mT and 365 mT, values equivalent to twinning stresses of about 1 MPa. It is concluded that both procedures, SR and TR melt spinning, provide microstructures favoring magnetic field induced twin variant reorientation. Fil: Pozo Lopez, Gabriela del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Condo, Adriana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Fabietti, Luis Maria Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Winkler, Elin Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Haberkorn, Nestor Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Urreta, Silvia Elena. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
Stoichiometric Ni2MnGa alloys are processed by two rapid solidification techniques – single-roller (SR) and twin-roller (TR) melt spinning – and the resulting microstructures and magnetic properties determined. Samples processed at tangential wheel speeds of 10 m/s (V10) and 15 m/s (V15) are studied in the as-cast condition to analyze the influence of the production methods on the microstructure. Important aspects like the resulting phases, their crystallographic texture, magnetic properties, martensitic transformation temperatures and Curie temperatures are compared. In addition, the magnetization mechanism involving twin boundary motion is explored. Our results indicate that the TR method provides lower cooling rates, thicker samples, higher internal stresses and larger MnS precipitates. However, the quenching rate is mainly determined by the tangential wheel velocity. TR samples also exhibit [100] texture normal to the ribbon plane but in a lesser extent than SR ribbons. Martensitic transformation temperatures are higher in samples V15 (~ 150 K) than in V10 (~ 100 K), with no clear difference between the SR and TR modes. This behavior is explained by considering distinct degrees of disorder in the L21 austenite phase resulting from quenching. The hysteresis of the transformation, defined as the difference Af − MS, takes similar values in the four samples analyzed. Pre-martensitic transformation temperatures are also slightly higher in samples V15, (230 ± 3) K, than in samples V10, (222 ± 3) K, as the magnitude of the Hopkinson effect, in good agreement with a higher residual stress level in TR ribbons. In the martensitic state, all ribbons exhibit hysteresis loops characteristic of a magnetization mechanism involving twin boundary motion. The switching magnetic fields for the onset of Type I twin boundary motion result between 220 mT and 365 mT, values equivalent to twinning stresses of about 1 MPa. It is concluded that both procedures, SR and TR melt spinning, provide microstructures favoring magnetic field induced twin variant reorientation. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59284 Pozo Lopez, Gabriela del Valle; Condo, Adriana Maria; Fabietti, Luis Maria Rodolfo; Winkler, Elin Lilian; Haberkorn, Nestor Fabian; et al.; Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons; Elsevier Science Inc; Materials Characterization; 124; 2-2017; 171-181 1044-5803 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59284 |
identifier_str_mv |
Pozo Lopez, Gabriela del Valle; Condo, Adriana Maria; Fabietti, Luis Maria Rodolfo; Winkler, Elin Lilian; Haberkorn, Nestor Fabian; et al.; Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons; Elsevier Science Inc; Materials Characterization; 124; 2-2017; 171-181 1044-5803 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.matchar.2016.12.020 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1044580316309822 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269225791520768 |
score |
13.13397 |