Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scale
- Autores
- Villarino, Sebastián Horacio; Studdert, Guillermo Alberto; Laterra, Pedro; Cendoya, María Gabriela
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Soil organic carbon (SOC) plays a vital role in determining soil quality and health, but also SOC decrease contributes significantly to the increase in atmospheric CO2 concentration. Countries need to quantify their SOC stocks and flows in order to assess their greenhouse gas emissions. To facilitate this, the Intergovernmental Panel on Climate Change has developed a simple carbon accounting method to estimate SOC stocks and flows in response to changes in land use. This method proposes three tiers for SOC change estimation. The higher the tier the greater the accuracy of the estimates, but also the complexity and the need of information. We used the RothC model to derive SOC change factors in order to develop a Tier 2 (T2) method. We applied this T2 and Tier 1 (T1) methods to estimate SOC stocks and flows in five sub regions of the Argentinean Pampa Region between 1900 and 2006. We evaluated T1 and T2 methods performances comparing their estimates against empirical data, at sub region and county scales. At both spatial scales, T1 method showed a poor performance and an important improvement was achieved with T2 method, although its performance varied among spatial scales. At sub region scale, T2 method estimates were very good (R2 = 0.85), but at county scale the fit was poor (R2 = 0.46). However, this poor fit may have been due, at least in part, to the quality of the input and validation information of one of the sub regions (Flooding Pampa) since its exclusion of the analysis led to an increase of the R2 up to 0.73. Tier 2 was used to estimate the impact of land use change on SOC. Sub regions with the highest estimated SOC losses were Central Pampa, Southern Pampa – Eastern and Rolling Pampa, with 35%, 28% and 26% average SOC losses, respectively. Given that several conceptual limitations of T1 method were overcome with our simple T2 method, we conclude that T2 method is more realistic to conduct a regional SOC inventory. Besides, our T2 method was developed without using empirical information from field or laboratory studies about SOC change and, therefore, countries that have not enough empirical information available on SOC change associated to land use could derive a similar T2 method.
Fil: Villarino, Sebastián Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Studdert, Guillermo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Laterra, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Cendoya, María Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina - Materia
-
Land Use Change
Soil Carbon Inventory
Ipcc
Argentinean Pampa Region
Tier 2 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/25626
Ver los metadatos del registro completo
id |
CONICETDig_fb2cc46f9910eab0fcccbb31c3e9c814 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/25626 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scaleVillarino, Sebastián HoracioStuddert, Guillermo AlbertoLaterra, PedroCendoya, María GabrielaLand Use ChangeSoil Carbon InventoryIpccArgentinean Pampa RegionTier 2https://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Soil organic carbon (SOC) plays a vital role in determining soil quality and health, but also SOC decrease contributes significantly to the increase in atmospheric CO2 concentration. Countries need to quantify their SOC stocks and flows in order to assess their greenhouse gas emissions. To facilitate this, the Intergovernmental Panel on Climate Change has developed a simple carbon accounting method to estimate SOC stocks and flows in response to changes in land use. This method proposes three tiers for SOC change estimation. The higher the tier the greater the accuracy of the estimates, but also the complexity and the need of information. We used the RothC model to derive SOC change factors in order to develop a Tier 2 (T2) method. We applied this T2 and Tier 1 (T1) methods to estimate SOC stocks and flows in five sub regions of the Argentinean Pampa Region between 1900 and 2006. We evaluated T1 and T2 methods performances comparing their estimates against empirical data, at sub region and county scales. At both spatial scales, T1 method showed a poor performance and an important improvement was achieved with T2 method, although its performance varied among spatial scales. At sub region scale, T2 method estimates were very good (R2 = 0.85), but at county scale the fit was poor (R2 = 0.46). However, this poor fit may have been due, at least in part, to the quality of the input and validation information of one of the sub regions (Flooding Pampa) since its exclusion of the analysis led to an increase of the R2 up to 0.73. Tier 2 was used to estimate the impact of land use change on SOC. Sub regions with the highest estimated SOC losses were Central Pampa, Southern Pampa – Eastern and Rolling Pampa, with 35%, 28% and 26% average SOC losses, respectively. Given that several conceptual limitations of T1 method were overcome with our simple T2 method, we conclude that T2 method is more realistic to conduct a regional SOC inventory. Besides, our T2 method was developed without using empirical information from field or laboratory studies about SOC change and, therefore, countries that have not enough empirical information available on SOC change associated to land use could derive a similar T2 method.Fil: Villarino, Sebastián Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Studdert, Guillermo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Laterra, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Cendoya, María Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaElsevier Science2014-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25626Villarino, Sebastián Horacio; Studdert, Guillermo Alberto; Laterra, Pedro; Cendoya, María Gabriela; Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scale; Elsevier Science; Agriculture, Ecosystems and Environment; 185; 1-3-2014; 118-1320167-8809CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.agee.2013.12.021info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S016788091300443Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:18Zoai:ri.conicet.gov.ar:11336/25626instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:18.299CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scale |
title |
Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scale |
spellingShingle |
Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scale Villarino, Sebastián Horacio Land Use Change Soil Carbon Inventory Ipcc Argentinean Pampa Region Tier 2 |
title_short |
Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scale |
title_full |
Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scale |
title_fullStr |
Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scale |
title_full_unstemmed |
Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scale |
title_sort |
Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scale |
dc.creator.none.fl_str_mv |
Villarino, Sebastián Horacio Studdert, Guillermo Alberto Laterra, Pedro Cendoya, María Gabriela |
author |
Villarino, Sebastián Horacio |
author_facet |
Villarino, Sebastián Horacio Studdert, Guillermo Alberto Laterra, Pedro Cendoya, María Gabriela |
author_role |
author |
author2 |
Studdert, Guillermo Alberto Laterra, Pedro Cendoya, María Gabriela |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Land Use Change Soil Carbon Inventory Ipcc Argentinean Pampa Region Tier 2 |
topic |
Land Use Change Soil Carbon Inventory Ipcc Argentinean Pampa Region Tier 2 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Soil organic carbon (SOC) plays a vital role in determining soil quality and health, but also SOC decrease contributes significantly to the increase in atmospheric CO2 concentration. Countries need to quantify their SOC stocks and flows in order to assess their greenhouse gas emissions. To facilitate this, the Intergovernmental Panel on Climate Change has developed a simple carbon accounting method to estimate SOC stocks and flows in response to changes in land use. This method proposes three tiers for SOC change estimation. The higher the tier the greater the accuracy of the estimates, but also the complexity and the need of information. We used the RothC model to derive SOC change factors in order to develop a Tier 2 (T2) method. We applied this T2 and Tier 1 (T1) methods to estimate SOC stocks and flows in five sub regions of the Argentinean Pampa Region between 1900 and 2006. We evaluated T1 and T2 methods performances comparing their estimates against empirical data, at sub region and county scales. At both spatial scales, T1 method showed a poor performance and an important improvement was achieved with T2 method, although its performance varied among spatial scales. At sub region scale, T2 method estimates were very good (R2 = 0.85), but at county scale the fit was poor (R2 = 0.46). However, this poor fit may have been due, at least in part, to the quality of the input and validation information of one of the sub regions (Flooding Pampa) since its exclusion of the analysis led to an increase of the R2 up to 0.73. Tier 2 was used to estimate the impact of land use change on SOC. Sub regions with the highest estimated SOC losses were Central Pampa, Southern Pampa – Eastern and Rolling Pampa, with 35%, 28% and 26% average SOC losses, respectively. Given that several conceptual limitations of T1 method were overcome with our simple T2 method, we conclude that T2 method is more realistic to conduct a regional SOC inventory. Besides, our T2 method was developed without using empirical information from field or laboratory studies about SOC change and, therefore, countries that have not enough empirical information available on SOC change associated to land use could derive a similar T2 method. Fil: Villarino, Sebastián Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina Fil: Studdert, Guillermo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina Fil: Laterra, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina Fil: Cendoya, María Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina |
description |
Soil organic carbon (SOC) plays a vital role in determining soil quality and health, but also SOC decrease contributes significantly to the increase in atmospheric CO2 concentration. Countries need to quantify their SOC stocks and flows in order to assess their greenhouse gas emissions. To facilitate this, the Intergovernmental Panel on Climate Change has developed a simple carbon accounting method to estimate SOC stocks and flows in response to changes in land use. This method proposes three tiers for SOC change estimation. The higher the tier the greater the accuracy of the estimates, but also the complexity and the need of information. We used the RothC model to derive SOC change factors in order to develop a Tier 2 (T2) method. We applied this T2 and Tier 1 (T1) methods to estimate SOC stocks and flows in five sub regions of the Argentinean Pampa Region between 1900 and 2006. We evaluated T1 and T2 methods performances comparing their estimates against empirical data, at sub region and county scales. At both spatial scales, T1 method showed a poor performance and an important improvement was achieved with T2 method, although its performance varied among spatial scales. At sub region scale, T2 method estimates were very good (R2 = 0.85), but at county scale the fit was poor (R2 = 0.46). However, this poor fit may have been due, at least in part, to the quality of the input and validation information of one of the sub regions (Flooding Pampa) since its exclusion of the analysis led to an increase of the R2 up to 0.73. Tier 2 was used to estimate the impact of land use change on SOC. Sub regions with the highest estimated SOC losses were Central Pampa, Southern Pampa – Eastern and Rolling Pampa, with 35%, 28% and 26% average SOC losses, respectively. Given that several conceptual limitations of T1 method were overcome with our simple T2 method, we conclude that T2 method is more realistic to conduct a regional SOC inventory. Besides, our T2 method was developed without using empirical information from field or laboratory studies about SOC change and, therefore, countries that have not enough empirical information available on SOC change associated to land use could derive a similar T2 method. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/25626 Villarino, Sebastián Horacio; Studdert, Guillermo Alberto; Laterra, Pedro; Cendoya, María Gabriela; Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scale; Elsevier Science; Agriculture, Ecosystems and Environment; 185; 1-3-2014; 118-132 0167-8809 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/25626 |
identifier_str_mv |
Villarino, Sebastián Horacio; Studdert, Guillermo Alberto; Laterra, Pedro; Cendoya, María Gabriela; Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scale; Elsevier Science; Agriculture, Ecosystems and Environment; 185; 1-3-2014; 118-132 0167-8809 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.agee.2013.12.021 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S016788091300443X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269749941108736 |
score |
13.13397 |