General entropy-like uncertainty relations in finite dimensions

Autores
Zozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We revisit entropic formulations of the uncertainty principle (UP) for an arbitrary pair of positive operator-valued measures (POVM) A and B, acting on finite dimensional Hilbert space. Salicrú generalized (h, ) ϕ -entropies, including Rényi and Tsallis ones among others, are used as uncertainty measures associated with the distribution probabilities corresponding to the outcomes of the observables. We obtain a nontrivial lower bound for the sum of generalized entropies for any pair of entropic functionals, which is valid for both pure and mixed states. The bound depends on the overlap triplet (ccc A B AB ,, ) , with cA (respectively cB) being the overlap between the elements of the POVM A (respectively B) and cA B, the overlap between the pair of POVM. Our approach is inspired by that of de Vicente and Sánchez-Ruiz (2008 Phys. Rev. A 77 042110) and consists in a minimization of the entropy sum subject to the Landau–Pollak inequality that links the maximum probabilities of both observables. We solve the constrained optimization problem in a geometrical way and furthermore, when dealing with Rényi or Tsallis entropic formulations of the UP, we overcome the Hölder conjugacy constraint imposed on the entropic indices by the Riesz–Thorin theorem. In the case of nondegenerate observables, we show that for given cA B, > 1 2 , the bound obtained is optimal; and that, for Rényi entropies, our bound improves Deutsch one, but Maassen–Uffink bound prevails when cA B, ⩽ 1 2 . Finally, we illustrate by comparing our bound with known previous results in particular cases of Rényi and Tsallis entropies.
Fil: Zozor, Steeve. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Centre National de la Recherche Scientifique; Francia
Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Centre National de la Recherche Scientifique; Francia
Fil: Portesi, Mariela Adelina. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
ENTROPIC UNCERTAINTY RELATION
GENERALIZED SALICRU ENTROPIES
PURE AND MIXED STATES
QUDITS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/102214

id CONICETDig_fadd90abf2749c9639f7de55434e78bf
oai_identifier_str oai:ri.conicet.gov.ar:11336/102214
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling General entropy-like uncertainty relations in finite dimensionsZozor, SteeveBosyk, Gustavo MartinPortesi, Mariela AdelinaENTROPIC UNCERTAINTY RELATIONGENERALIZED SALICRU ENTROPIESPURE AND MIXED STATESQUDITShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We revisit entropic formulations of the uncertainty principle (UP) for an arbitrary pair of positive operator-valued measures (POVM) A and B, acting on finite dimensional Hilbert space. Salicrú generalized (h, ) ϕ -entropies, including Rényi and Tsallis ones among others, are used as uncertainty measures associated with the distribution probabilities corresponding to the outcomes of the observables. We obtain a nontrivial lower bound for the sum of generalized entropies for any pair of entropic functionals, which is valid for both pure and mixed states. The bound depends on the overlap triplet (ccc A B AB ,, ) , with cA (respectively cB) being the overlap between the elements of the POVM A (respectively B) and cA B, the overlap between the pair of POVM. Our approach is inspired by that of de Vicente and Sánchez-Ruiz (2008 Phys. Rev. A 77 042110) and consists in a minimization of the entropy sum subject to the Landau–Pollak inequality that links the maximum probabilities of both observables. We solve the constrained optimization problem in a geometrical way and furthermore, when dealing with Rényi or Tsallis entropic formulations of the UP, we overcome the Hölder conjugacy constraint imposed on the entropic indices by the Riesz–Thorin theorem. In the case of nondegenerate observables, we show that for given cA B, > 1 2 , the bound obtained is optimal; and that, for Rényi entropies, our bound improves Deutsch one, but Maassen–Uffink bound prevails when cA B, ⩽ 1 2 . Finally, we illustrate by comparing our bound with known previous results in particular cases of Rényi and Tsallis entropies.Fil: Zozor, Steeve. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Centre National de la Recherche Scientifique; FranciaFil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Centre National de la Recherche Scientifique; FranciaFil: Portesi, Mariela Adelina. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaIOP Publishing2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/102214Zozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina; General entropy-like uncertainty relations in finite dimensions; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 49; 11-2014; 49530201-495302291751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/47/49/495302/articleinfo:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/47/49/495302info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:03Zoai:ri.conicet.gov.ar:11336/102214instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:04.146CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv General entropy-like uncertainty relations in finite dimensions
title General entropy-like uncertainty relations in finite dimensions
spellingShingle General entropy-like uncertainty relations in finite dimensions
Zozor, Steeve
ENTROPIC UNCERTAINTY RELATION
GENERALIZED SALICRU ENTROPIES
PURE AND MIXED STATES
QUDITS
title_short General entropy-like uncertainty relations in finite dimensions
title_full General entropy-like uncertainty relations in finite dimensions
title_fullStr General entropy-like uncertainty relations in finite dimensions
title_full_unstemmed General entropy-like uncertainty relations in finite dimensions
title_sort General entropy-like uncertainty relations in finite dimensions
dc.creator.none.fl_str_mv Zozor, Steeve
Bosyk, Gustavo Martin
Portesi, Mariela Adelina
author Zozor, Steeve
author_facet Zozor, Steeve
Bosyk, Gustavo Martin
Portesi, Mariela Adelina
author_role author
author2 Bosyk, Gustavo Martin
Portesi, Mariela Adelina
author2_role author
author
dc.subject.none.fl_str_mv ENTROPIC UNCERTAINTY RELATION
GENERALIZED SALICRU ENTROPIES
PURE AND MIXED STATES
QUDITS
topic ENTROPIC UNCERTAINTY RELATION
GENERALIZED SALICRU ENTROPIES
PURE AND MIXED STATES
QUDITS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We revisit entropic formulations of the uncertainty principle (UP) for an arbitrary pair of positive operator-valued measures (POVM) A and B, acting on finite dimensional Hilbert space. Salicrú generalized (h, ) ϕ -entropies, including Rényi and Tsallis ones among others, are used as uncertainty measures associated with the distribution probabilities corresponding to the outcomes of the observables. We obtain a nontrivial lower bound for the sum of generalized entropies for any pair of entropic functionals, which is valid for both pure and mixed states. The bound depends on the overlap triplet (ccc A B AB ,, ) , with cA (respectively cB) being the overlap between the elements of the POVM A (respectively B) and cA B, the overlap between the pair of POVM. Our approach is inspired by that of de Vicente and Sánchez-Ruiz (2008 Phys. Rev. A 77 042110) and consists in a minimization of the entropy sum subject to the Landau–Pollak inequality that links the maximum probabilities of both observables. We solve the constrained optimization problem in a geometrical way and furthermore, when dealing with Rényi or Tsallis entropic formulations of the UP, we overcome the Hölder conjugacy constraint imposed on the entropic indices by the Riesz–Thorin theorem. In the case of nondegenerate observables, we show that for given cA B, > 1 2 , the bound obtained is optimal; and that, for Rényi entropies, our bound improves Deutsch one, but Maassen–Uffink bound prevails when cA B, ⩽ 1 2 . Finally, we illustrate by comparing our bound with known previous results in particular cases of Rényi and Tsallis entropies.
Fil: Zozor, Steeve. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Centre National de la Recherche Scientifique; Francia
Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Centre National de la Recherche Scientifique; Francia
Fil: Portesi, Mariela Adelina. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description We revisit entropic formulations of the uncertainty principle (UP) for an arbitrary pair of positive operator-valued measures (POVM) A and B, acting on finite dimensional Hilbert space. Salicrú generalized (h, ) ϕ -entropies, including Rényi and Tsallis ones among others, are used as uncertainty measures associated with the distribution probabilities corresponding to the outcomes of the observables. We obtain a nontrivial lower bound for the sum of generalized entropies for any pair of entropic functionals, which is valid for both pure and mixed states. The bound depends on the overlap triplet (ccc A B AB ,, ) , with cA (respectively cB) being the overlap between the elements of the POVM A (respectively B) and cA B, the overlap between the pair of POVM. Our approach is inspired by that of de Vicente and Sánchez-Ruiz (2008 Phys. Rev. A 77 042110) and consists in a minimization of the entropy sum subject to the Landau–Pollak inequality that links the maximum probabilities of both observables. We solve the constrained optimization problem in a geometrical way and furthermore, when dealing with Rényi or Tsallis entropic formulations of the UP, we overcome the Hölder conjugacy constraint imposed on the entropic indices by the Riesz–Thorin theorem. In the case of nondegenerate observables, we show that for given cA B, > 1 2 , the bound obtained is optimal; and that, for Rényi entropies, our bound improves Deutsch one, but Maassen–Uffink bound prevails when cA B, ⩽ 1 2 . Finally, we illustrate by comparing our bound with known previous results in particular cases of Rényi and Tsallis entropies.
publishDate 2014
dc.date.none.fl_str_mv 2014-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/102214
Zozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina; General entropy-like uncertainty relations in finite dimensions; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 49; 11-2014; 49530201-49530229
1751-8113
CONICET Digital
CONICET
url http://hdl.handle.net/11336/102214
identifier_str_mv Zozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina; General entropy-like uncertainty relations in finite dimensions; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 49; 11-2014; 49530201-49530229
1751-8113
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/47/49/495302/article
info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/47/49/495302
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614260653555712
score 13.070432