General entropy-like uncertainty relations in finite dimensions
- Autores
- Zozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We revisit entropic formulations of the uncertainty principle (UP) for an arbitrary pair of positive operator-valued measures (POVM) A and B, acting on finite dimensional Hilbert space. Salicrú generalized (h, ) ϕ -entropies, including Rényi and Tsallis ones among others, are used as uncertainty measures associated with the distribution probabilities corresponding to the outcomes of the observables. We obtain a nontrivial lower bound for the sum of generalized entropies for any pair of entropic functionals, which is valid for both pure and mixed states. The bound depends on the overlap triplet (ccc A B AB ,, ) , with cA (respectively cB) being the overlap between the elements of the POVM A (respectively B) and cA B, the overlap between the pair of POVM. Our approach is inspired by that of de Vicente and Sánchez-Ruiz (2008 Phys. Rev. A 77 042110) and consists in a minimization of the entropy sum subject to the Landau–Pollak inequality that links the maximum probabilities of both observables. We solve the constrained optimization problem in a geometrical way and furthermore, when dealing with Rényi or Tsallis entropic formulations of the UP, we overcome the Hölder conjugacy constraint imposed on the entropic indices by the Riesz–Thorin theorem. In the case of nondegenerate observables, we show that for given cA B, > 1 2 , the bound obtained is optimal; and that, for Rényi entropies, our bound improves Deutsch one, but Maassen–Uffink bound prevails when cA B, ⩽ 1 2 . Finally, we illustrate by comparing our bound with known previous results in particular cases of Rényi and Tsallis entropies.
Fil: Zozor, Steeve. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Centre National de la Recherche Scientifique; Francia
Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Centre National de la Recherche Scientifique; Francia
Fil: Portesi, Mariela Adelina. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
ENTROPIC UNCERTAINTY RELATION
GENERALIZED SALICRU ENTROPIES
PURE AND MIXED STATES
QUDITS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/102214
Ver los metadatos del registro completo
id |
CONICETDig_fadd90abf2749c9639f7de55434e78bf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/102214 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
General entropy-like uncertainty relations in finite dimensionsZozor, SteeveBosyk, Gustavo MartinPortesi, Mariela AdelinaENTROPIC UNCERTAINTY RELATIONGENERALIZED SALICRU ENTROPIESPURE AND MIXED STATESQUDITShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We revisit entropic formulations of the uncertainty principle (UP) for an arbitrary pair of positive operator-valued measures (POVM) A and B, acting on finite dimensional Hilbert space. Salicrú generalized (h, ) ϕ -entropies, including Rényi and Tsallis ones among others, are used as uncertainty measures associated with the distribution probabilities corresponding to the outcomes of the observables. We obtain a nontrivial lower bound for the sum of generalized entropies for any pair of entropic functionals, which is valid for both pure and mixed states. The bound depends on the overlap triplet (ccc A B AB ,, ) , with cA (respectively cB) being the overlap between the elements of the POVM A (respectively B) and cA B, the overlap between the pair of POVM. Our approach is inspired by that of de Vicente and Sánchez-Ruiz (2008 Phys. Rev. A 77 042110) and consists in a minimization of the entropy sum subject to the Landau–Pollak inequality that links the maximum probabilities of both observables. We solve the constrained optimization problem in a geometrical way and furthermore, when dealing with Rényi or Tsallis entropic formulations of the UP, we overcome the Hölder conjugacy constraint imposed on the entropic indices by the Riesz–Thorin theorem. In the case of nondegenerate observables, we show that for given cA B, > 1 2 , the bound obtained is optimal; and that, for Rényi entropies, our bound improves Deutsch one, but Maassen–Uffink bound prevails when cA B, ⩽ 1 2 . Finally, we illustrate by comparing our bound with known previous results in particular cases of Rényi and Tsallis entropies.Fil: Zozor, Steeve. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Centre National de la Recherche Scientifique; FranciaFil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Centre National de la Recherche Scientifique; FranciaFil: Portesi, Mariela Adelina. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaIOP Publishing2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/102214Zozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina; General entropy-like uncertainty relations in finite dimensions; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 49; 11-2014; 49530201-495302291751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/47/49/495302/articleinfo:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/47/49/495302info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:03Zoai:ri.conicet.gov.ar:11336/102214instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:04.146CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
General entropy-like uncertainty relations in finite dimensions |
title |
General entropy-like uncertainty relations in finite dimensions |
spellingShingle |
General entropy-like uncertainty relations in finite dimensions Zozor, Steeve ENTROPIC UNCERTAINTY RELATION GENERALIZED SALICRU ENTROPIES PURE AND MIXED STATES QUDITS |
title_short |
General entropy-like uncertainty relations in finite dimensions |
title_full |
General entropy-like uncertainty relations in finite dimensions |
title_fullStr |
General entropy-like uncertainty relations in finite dimensions |
title_full_unstemmed |
General entropy-like uncertainty relations in finite dimensions |
title_sort |
General entropy-like uncertainty relations in finite dimensions |
dc.creator.none.fl_str_mv |
Zozor, Steeve Bosyk, Gustavo Martin Portesi, Mariela Adelina |
author |
Zozor, Steeve |
author_facet |
Zozor, Steeve Bosyk, Gustavo Martin Portesi, Mariela Adelina |
author_role |
author |
author2 |
Bosyk, Gustavo Martin Portesi, Mariela Adelina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ENTROPIC UNCERTAINTY RELATION GENERALIZED SALICRU ENTROPIES PURE AND MIXED STATES QUDITS |
topic |
ENTROPIC UNCERTAINTY RELATION GENERALIZED SALICRU ENTROPIES PURE AND MIXED STATES QUDITS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We revisit entropic formulations of the uncertainty principle (UP) for an arbitrary pair of positive operator-valued measures (POVM) A and B, acting on finite dimensional Hilbert space. Salicrú generalized (h, ) ϕ -entropies, including Rényi and Tsallis ones among others, are used as uncertainty measures associated with the distribution probabilities corresponding to the outcomes of the observables. We obtain a nontrivial lower bound for the sum of generalized entropies for any pair of entropic functionals, which is valid for both pure and mixed states. The bound depends on the overlap triplet (ccc A B AB ,, ) , with cA (respectively cB) being the overlap between the elements of the POVM A (respectively B) and cA B, the overlap between the pair of POVM. Our approach is inspired by that of de Vicente and Sánchez-Ruiz (2008 Phys. Rev. A 77 042110) and consists in a minimization of the entropy sum subject to the Landau–Pollak inequality that links the maximum probabilities of both observables. We solve the constrained optimization problem in a geometrical way and furthermore, when dealing with Rényi or Tsallis entropic formulations of the UP, we overcome the Hölder conjugacy constraint imposed on the entropic indices by the Riesz–Thorin theorem. In the case of nondegenerate observables, we show that for given cA B, > 1 2 , the bound obtained is optimal; and that, for Rényi entropies, our bound improves Deutsch one, but Maassen–Uffink bound prevails when cA B, ⩽ 1 2 . Finally, we illustrate by comparing our bound with known previous results in particular cases of Rényi and Tsallis entropies. Fil: Zozor, Steeve. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Centre National de la Recherche Scientifique; Francia Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Centre National de la Recherche Scientifique; Francia Fil: Portesi, Mariela Adelina. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
We revisit entropic formulations of the uncertainty principle (UP) for an arbitrary pair of positive operator-valued measures (POVM) A and B, acting on finite dimensional Hilbert space. Salicrú generalized (h, ) ϕ -entropies, including Rényi and Tsallis ones among others, are used as uncertainty measures associated with the distribution probabilities corresponding to the outcomes of the observables. We obtain a nontrivial lower bound for the sum of generalized entropies for any pair of entropic functionals, which is valid for both pure and mixed states. The bound depends on the overlap triplet (ccc A B AB ,, ) , with cA (respectively cB) being the overlap between the elements of the POVM A (respectively B) and cA B, the overlap between the pair of POVM. Our approach is inspired by that of de Vicente and Sánchez-Ruiz (2008 Phys. Rev. A 77 042110) and consists in a minimization of the entropy sum subject to the Landau–Pollak inequality that links the maximum probabilities of both observables. We solve the constrained optimization problem in a geometrical way and furthermore, when dealing with Rényi or Tsallis entropic formulations of the UP, we overcome the Hölder conjugacy constraint imposed on the entropic indices by the Riesz–Thorin theorem. In the case of nondegenerate observables, we show that for given cA B, > 1 2 , the bound obtained is optimal; and that, for Rényi entropies, our bound improves Deutsch one, but Maassen–Uffink bound prevails when cA B, ⩽ 1 2 . Finally, we illustrate by comparing our bound with known previous results in particular cases of Rényi and Tsallis entropies. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/102214 Zozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina; General entropy-like uncertainty relations in finite dimensions; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 49; 11-2014; 49530201-49530229 1751-8113 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/102214 |
identifier_str_mv |
Zozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina; General entropy-like uncertainty relations in finite dimensions; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 49; 11-2014; 49530201-49530229 1751-8113 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/47/49/495302/article info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/47/49/495302 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614260653555712 |
score |
13.070432 |