Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies

Autores
Figueira, Santiago; Gorin, Daniel Alejadro; Grimson, Rafael
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It is well-known that Independence Friendly (IF) logic is equivalent to existential secondorder logic (Σ1 1 ) and, therefore, is not closed under classical negation. The Boolean closure of IF sentences, called Extended IF-logic, on the other hand, corresponds to a proper fragment of 1 2. In this article we consider SL(↓), IF-logic extended with Hodges’ flattening operator ↓, which allows to define a classical negation. SL(↓) contains Extended IF-logic and hence it is at least as expressive as the Boolean closure of Σ1 1 . We prove that SL(↓) corresponds to a weak syntactic fragment of SO which we show to be strictly contained in 1 2. The separation is derived almost trivially from the fact that Σ1 n defines its own truth-predicate. We finally show that SL(↓) is equivalent to the logic of Henkin quantifiers, which shows, we argue, that Hodges’ notion of negation is adequate.
Fil: Figueira, Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gorin, Daniel Alejadro. Friedrich Alexander Universität Erlangen-Nürnberg. Department of Computer Science; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Grimson, Rafael. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Independence Friendly Logic
Second Order Logic
Henkin Quantifiers
Classical Negation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/31998

id CONICETDig_fa7dc993871dc7ef0017a1a372be4de9
oai_identifier_str oai:ri.conicet.gov.ar:11336/31998
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Independence friendly logic with classical negation via flattening is a second-order logic with weak dependenciesFigueira, SantiagoGorin, Daniel AlejadroGrimson, RafaelIndependence Friendly LogicSecond Order LogicHenkin QuantifiersClassical Negationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is well-known that Independence Friendly (IF) logic is equivalent to existential secondorder logic (Σ1 1 ) and, therefore, is not closed under classical negation. The Boolean closure of IF sentences, called Extended IF-logic, on the other hand, corresponds to a proper fragment of 1 2. In this article we consider SL(↓), IF-logic extended with Hodges’ flattening operator ↓, which allows to define a classical negation. SL(↓) contains Extended IF-logic and hence it is at least as expressive as the Boolean closure of Σ1 1 . We prove that SL(↓) corresponds to a weak syntactic fragment of SO which we show to be strictly contained in 1 2. The separation is derived almost trivially from the fact that Σ1 n defines its own truth-predicate. We finally show that SL(↓) is equivalent to the logic of Henkin quantifiers, which shows, we argue, that Hodges’ notion of negation is adequate.Fil: Figueira, Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gorin, Daniel Alejadro. Friedrich Alexander Universität Erlangen-Nürnberg. Department of Computer Science; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Grimson, Rafael. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Inc2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31998Grimson, Rafael; Gorin, Daniel Alejadro; Figueira, Santiago; Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies; Elsevier Inc; Journal of Computer and System Sciences; 80; 6; 4-2014; 1102-11180022-0000CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022000014000488info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcss.2014.04.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:50Zoai:ri.conicet.gov.ar:11336/31998instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:51.151CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies
title Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies
spellingShingle Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies
Figueira, Santiago
Independence Friendly Logic
Second Order Logic
Henkin Quantifiers
Classical Negation
title_short Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies
title_full Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies
title_fullStr Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies
title_full_unstemmed Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies
title_sort Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies
dc.creator.none.fl_str_mv Figueira, Santiago
Gorin, Daniel Alejadro
Grimson, Rafael
author Figueira, Santiago
author_facet Figueira, Santiago
Gorin, Daniel Alejadro
Grimson, Rafael
author_role author
author2 Gorin, Daniel Alejadro
Grimson, Rafael
author2_role author
author
dc.subject.none.fl_str_mv Independence Friendly Logic
Second Order Logic
Henkin Quantifiers
Classical Negation
topic Independence Friendly Logic
Second Order Logic
Henkin Quantifiers
Classical Negation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv It is well-known that Independence Friendly (IF) logic is equivalent to existential secondorder logic (Σ1 1 ) and, therefore, is not closed under classical negation. The Boolean closure of IF sentences, called Extended IF-logic, on the other hand, corresponds to a proper fragment of 1 2. In this article we consider SL(↓), IF-logic extended with Hodges’ flattening operator ↓, which allows to define a classical negation. SL(↓) contains Extended IF-logic and hence it is at least as expressive as the Boolean closure of Σ1 1 . We prove that SL(↓) corresponds to a weak syntactic fragment of SO which we show to be strictly contained in 1 2. The separation is derived almost trivially from the fact that Σ1 n defines its own truth-predicate. We finally show that SL(↓) is equivalent to the logic of Henkin quantifiers, which shows, we argue, that Hodges’ notion of negation is adequate.
Fil: Figueira, Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gorin, Daniel Alejadro. Friedrich Alexander Universität Erlangen-Nürnberg. Department of Computer Science; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Grimson, Rafael. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description It is well-known that Independence Friendly (IF) logic is equivalent to existential secondorder logic (Σ1 1 ) and, therefore, is not closed under classical negation. The Boolean closure of IF sentences, called Extended IF-logic, on the other hand, corresponds to a proper fragment of 1 2. In this article we consider SL(↓), IF-logic extended with Hodges’ flattening operator ↓, which allows to define a classical negation. SL(↓) contains Extended IF-logic and hence it is at least as expressive as the Boolean closure of Σ1 1 . We prove that SL(↓) corresponds to a weak syntactic fragment of SO which we show to be strictly contained in 1 2. The separation is derived almost trivially from the fact that Σ1 n defines its own truth-predicate. We finally show that SL(↓) is equivalent to the logic of Henkin quantifiers, which shows, we argue, that Hodges’ notion of negation is adequate.
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/31998
Grimson, Rafael; Gorin, Daniel Alejadro; Figueira, Santiago; Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies; Elsevier Inc; Journal of Computer and System Sciences; 80; 6; 4-2014; 1102-1118
0022-0000
CONICET Digital
CONICET
url http://hdl.handle.net/11336/31998
identifier_str_mv Grimson, Rafael; Gorin, Daniel Alejadro; Figueira, Santiago; Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies; Elsevier Inc; Journal of Computer and System Sciences; 80; 6; 4-2014; 1102-1118
0022-0000
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022000014000488
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcss.2014.04.004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Inc
publisher.none.fl_str_mv Elsevier Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613592212570112
score 13.070432