Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies
- Autores
- Figueira, Santiago; Gorin, Daniel Alejadro; Grimson, Rafael
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is well-known that Independence Friendly (IF) logic is equivalent to existential secondorder logic (Σ1 1 ) and, therefore, is not closed under classical negation. The Boolean closure of IF sentences, called Extended IF-logic, on the other hand, corresponds to a proper fragment of 1 2. In this article we consider SL(↓), IF-logic extended with Hodges’ flattening operator ↓, which allows to define a classical negation. SL(↓) contains Extended IF-logic and hence it is at least as expressive as the Boolean closure of Σ1 1 . We prove that SL(↓) corresponds to a weak syntactic fragment of SO which we show to be strictly contained in 1 2. The separation is derived almost trivially from the fact that Σ1 n defines its own truth-predicate. We finally show that SL(↓) is equivalent to the logic of Henkin quantifiers, which shows, we argue, that Hodges’ notion of negation is adequate.
Fil: Figueira, Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gorin, Daniel Alejadro. Friedrich Alexander Universität Erlangen-Nürnberg. Department of Computer Science; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Grimson, Rafael. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Independence Friendly Logic
Second Order Logic
Henkin Quantifiers
Classical Negation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/31998
Ver los metadatos del registro completo
id |
CONICETDig_fa7dc993871dc7ef0017a1a372be4de9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/31998 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Independence friendly logic with classical negation via flattening is a second-order logic with weak dependenciesFigueira, SantiagoGorin, Daniel AlejadroGrimson, RafaelIndependence Friendly LogicSecond Order LogicHenkin QuantifiersClassical Negationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is well-known that Independence Friendly (IF) logic is equivalent to existential secondorder logic (Σ1 1 ) and, therefore, is not closed under classical negation. The Boolean closure of IF sentences, called Extended IF-logic, on the other hand, corresponds to a proper fragment of 1 2. In this article we consider SL(↓), IF-logic extended with Hodges’ flattening operator ↓, which allows to define a classical negation. SL(↓) contains Extended IF-logic and hence it is at least as expressive as the Boolean closure of Σ1 1 . We prove that SL(↓) corresponds to a weak syntactic fragment of SO which we show to be strictly contained in 1 2. The separation is derived almost trivially from the fact that Σ1 n defines its own truth-predicate. We finally show that SL(↓) is equivalent to the logic of Henkin quantifiers, which shows, we argue, that Hodges’ notion of negation is adequate.Fil: Figueira, Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gorin, Daniel Alejadro. Friedrich Alexander Universität Erlangen-Nürnberg. Department of Computer Science; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Grimson, Rafael. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Inc2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31998Grimson, Rafael; Gorin, Daniel Alejadro; Figueira, Santiago; Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies; Elsevier Inc; Journal of Computer and System Sciences; 80; 6; 4-2014; 1102-11180022-0000CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022000014000488info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcss.2014.04.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:50Zoai:ri.conicet.gov.ar:11336/31998instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:51.151CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies |
title |
Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies |
spellingShingle |
Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies Figueira, Santiago Independence Friendly Logic Second Order Logic Henkin Quantifiers Classical Negation |
title_short |
Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies |
title_full |
Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies |
title_fullStr |
Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies |
title_full_unstemmed |
Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies |
title_sort |
Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies |
dc.creator.none.fl_str_mv |
Figueira, Santiago Gorin, Daniel Alejadro Grimson, Rafael |
author |
Figueira, Santiago |
author_facet |
Figueira, Santiago Gorin, Daniel Alejadro Grimson, Rafael |
author_role |
author |
author2 |
Gorin, Daniel Alejadro Grimson, Rafael |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Independence Friendly Logic Second Order Logic Henkin Quantifiers Classical Negation |
topic |
Independence Friendly Logic Second Order Logic Henkin Quantifiers Classical Negation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It is well-known that Independence Friendly (IF) logic is equivalent to existential secondorder logic (Σ1 1 ) and, therefore, is not closed under classical negation. The Boolean closure of IF sentences, called Extended IF-logic, on the other hand, corresponds to a proper fragment of 1 2. In this article we consider SL(↓), IF-logic extended with Hodges’ flattening operator ↓, which allows to define a classical negation. SL(↓) contains Extended IF-logic and hence it is at least as expressive as the Boolean closure of Σ1 1 . We prove that SL(↓) corresponds to a weak syntactic fragment of SO which we show to be strictly contained in 1 2. The separation is derived almost trivially from the fact that Σ1 n defines its own truth-predicate. We finally show that SL(↓) is equivalent to the logic of Henkin quantifiers, which shows, we argue, that Hodges’ notion of negation is adequate. Fil: Figueira, Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gorin, Daniel Alejadro. Friedrich Alexander Universität Erlangen-Nürnberg. Department of Computer Science; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Grimson, Rafael. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
It is well-known that Independence Friendly (IF) logic is equivalent to existential secondorder logic (Σ1 1 ) and, therefore, is not closed under classical negation. The Boolean closure of IF sentences, called Extended IF-logic, on the other hand, corresponds to a proper fragment of 1 2. In this article we consider SL(↓), IF-logic extended with Hodges’ flattening operator ↓, which allows to define a classical negation. SL(↓) contains Extended IF-logic and hence it is at least as expressive as the Boolean closure of Σ1 1 . We prove that SL(↓) corresponds to a weak syntactic fragment of SO which we show to be strictly contained in 1 2. The separation is derived almost trivially from the fact that Σ1 n defines its own truth-predicate. We finally show that SL(↓) is equivalent to the logic of Henkin quantifiers, which shows, we argue, that Hodges’ notion of negation is adequate. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/31998 Grimson, Rafael; Gorin, Daniel Alejadro; Figueira, Santiago; Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies; Elsevier Inc; Journal of Computer and System Sciences; 80; 6; 4-2014; 1102-1118 0022-0000 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/31998 |
identifier_str_mv |
Grimson, Rafael; Gorin, Daniel Alejadro; Figueira, Santiago; Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies; Elsevier Inc; Journal of Computer and System Sciences; 80; 6; 4-2014; 1102-1118 0022-0000 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022000014000488 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcss.2014.04.004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613592212570112 |
score |
13.070432 |