Constructive logic with strong negation as a substructural logic
- Autores
- Busaniche, Manuela; Cignoli, Roberto Leonardo Oscar
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Spinks and Veroff have shown that constructive logic with strong negation (CLSN for short), can be considered as a substructural logic. We use algebraic tools developed to study substructural logics to investigate some axiomatic extensions of CLSN. For instance, we prove that Nilpotent minimum logic is the extension of CLSN by the prelinearity axiom. This generalizes the well-known result by Monteiro and Vakarelov that three-valued ukasiewicz logic is an extension of CLSN. A Glivenko-like theorem relating CLSN and three-valued ukasiewicz logic is proved.
Fil: Busaniche, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Cignoli, Roberto Leonardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
Constructive Logic
Heyting Algebras
Nelson Algebras
Nilpotent Minimum Logic
Residuated Lattices
Strong Negation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/75191
Ver los metadatos del registro completo
| id |
CONICETDig_7c5fb5a89d383f5c50d663c771357652 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/75191 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Constructive logic with strong negation as a substructural logicBusaniche, ManuelaCignoli, Roberto Leonardo OscarConstructive LogicHeyting AlgebrasNelson AlgebrasNilpotent Minimum LogicResiduated LatticesStrong Negationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Spinks and Veroff have shown that constructive logic with strong negation (CLSN for short), can be considered as a substructural logic. We use algebraic tools developed to study substructural logics to investigate some axiomatic extensions of CLSN. For instance, we prove that Nilpotent minimum logic is the extension of CLSN by the prelinearity axiom. This generalizes the well-known result by Monteiro and Vakarelov that three-valued ukasiewicz logic is an extension of CLSN. A Glivenko-like theorem relating CLSN and three-valued ukasiewicz logic is proved.Fil: Busaniche, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Cignoli, Roberto Leonardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaOxford University Press2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75191Busaniche, Manuela; Cignoli, Roberto Leonardo Oscar; Constructive logic with strong negation as a substructural logic; Oxford University Press; Journal of Logic and Computation; 20; 4; 8-2010; 761-7930955-792XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/logcom/exn081info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:30:46Zoai:ri.conicet.gov.ar:11336/75191instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:30:47.179CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Constructive logic with strong negation as a substructural logic |
| title |
Constructive logic with strong negation as a substructural logic |
| spellingShingle |
Constructive logic with strong negation as a substructural logic Busaniche, Manuela Constructive Logic Heyting Algebras Nelson Algebras Nilpotent Minimum Logic Residuated Lattices Strong Negation |
| title_short |
Constructive logic with strong negation as a substructural logic |
| title_full |
Constructive logic with strong negation as a substructural logic |
| title_fullStr |
Constructive logic with strong negation as a substructural logic |
| title_full_unstemmed |
Constructive logic with strong negation as a substructural logic |
| title_sort |
Constructive logic with strong negation as a substructural logic |
| dc.creator.none.fl_str_mv |
Busaniche, Manuela Cignoli, Roberto Leonardo Oscar |
| author |
Busaniche, Manuela |
| author_facet |
Busaniche, Manuela Cignoli, Roberto Leonardo Oscar |
| author_role |
author |
| author2 |
Cignoli, Roberto Leonardo Oscar |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Constructive Logic Heyting Algebras Nelson Algebras Nilpotent Minimum Logic Residuated Lattices Strong Negation |
| topic |
Constructive Logic Heyting Algebras Nelson Algebras Nilpotent Minimum Logic Residuated Lattices Strong Negation |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Spinks and Veroff have shown that constructive logic with strong negation (CLSN for short), can be considered as a substructural logic. We use algebraic tools developed to study substructural logics to investigate some axiomatic extensions of CLSN. For instance, we prove that Nilpotent minimum logic is the extension of CLSN by the prelinearity axiom. This generalizes the well-known result by Monteiro and Vakarelov that three-valued ukasiewicz logic is an extension of CLSN. A Glivenko-like theorem relating CLSN and three-valued ukasiewicz logic is proved. Fil: Busaniche, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Cignoli, Roberto Leonardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
Spinks and Veroff have shown that constructive logic with strong negation (CLSN for short), can be considered as a substructural logic. We use algebraic tools developed to study substructural logics to investigate some axiomatic extensions of CLSN. For instance, we prove that Nilpotent minimum logic is the extension of CLSN by the prelinearity axiom. This generalizes the well-known result by Monteiro and Vakarelov that three-valued ukasiewicz logic is an extension of CLSN. A Glivenko-like theorem relating CLSN and three-valued ukasiewicz logic is proved. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/75191 Busaniche, Manuela; Cignoli, Roberto Leonardo Oscar; Constructive logic with strong negation as a substructural logic; Oxford University Press; Journal of Logic and Computation; 20; 4; 8-2010; 761-793 0955-792X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/75191 |
| identifier_str_mv |
Busaniche, Manuela; Cignoli, Roberto Leonardo Oscar; Constructive logic with strong negation as a substructural logic; Oxford University Press; Journal of Logic and Computation; 20; 4; 8-2010; 761-793 0955-792X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/logcom/exn081 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Oxford University Press |
| publisher.none.fl_str_mv |
Oxford University Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977978650165248 |
| score |
13.087074 |