Wavelength-resolved neutron transmission analyses of textured materials

Autores
Malamud, F.; Vicente Alvarez, Miguel Angel; Santisteban, Javier Roberto; Strobl, M.
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Wavelength-resolved neutron imaging for diffraction contrast often referred to as Bragg edge imaging is a neutron-based technique that has gained attention in recent years due to its promising ability to characterize the microstructure of polycrystalline materials with spatial resolution. This method relies on spatially resolved analyses of diffraction induced features in transmission spectra within the thermal neutron range. Assessable characteristics are e.g. phase fractions, lattice strains, and crystallographic texture. For the latter forward modelling of transmission spectra from known orientation distribution functions (ODFs) has been demonstrated for various materials. However, solving the inverse problem—retrieving crystallographic texture from transmission spectra—presents a more complex challenge. In recent years, the authors have developed two theoretical approaches to model the relationship between transmission spectra and texture, either by decomposing the ODF into individual orientation fractions or by expanding it into a Fourier series. Both approaches have shown excellent predictive capability for materials with different crystal symmetries, including hexagonal, FCC, and BCC structures. Here we present the comparison between the proposed models, highlighting the advantages and disadvantages of the direct method based on different approaches for the analysis of wavelength-resolved neutron transmission experiments of textured materials. Finally, we present the future trends in the inversion method, i.e., the estimation of the ODFs from transmission spectra in tomography experiments.
Fil: Malamud, F.. Paul Scherrer Institute; Suiza
Fil: Vicente Alvarez, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Santisteban, Javier Roberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Strobl, M.. Paul Scherrer Institute; Suiza
Materia
textura
neutrones
transmision
TOF
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/272835

id CONICETDig_f8974f988c9a2ba4a2b17e6fceacafba
oai_identifier_str oai:ri.conicet.gov.ar:11336/272835
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Wavelength-resolved neutron transmission analyses of textured materialsMalamud, F.Vicente Alvarez, Miguel AngelSantisteban, Javier RobertoStrobl, M.texturaneutronestransmisionTOFhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Wavelength-resolved neutron imaging for diffraction contrast often referred to as Bragg edge imaging is a neutron-based technique that has gained attention in recent years due to its promising ability to characterize the microstructure of polycrystalline materials with spatial resolution. This method relies on spatially resolved analyses of diffraction induced features in transmission spectra within the thermal neutron range. Assessable characteristics are e.g. phase fractions, lattice strains, and crystallographic texture. For the latter forward modelling of transmission spectra from known orientation distribution functions (ODFs) has been demonstrated for various materials. However, solving the inverse problem—retrieving crystallographic texture from transmission spectra—presents a more complex challenge. In recent years, the authors have developed two theoretical approaches to model the relationship between transmission spectra and texture, either by decomposing the ODF into individual orientation fractions or by expanding it into a Fourier series. Both approaches have shown excellent predictive capability for materials with different crystal symmetries, including hexagonal, FCC, and BCC structures. Here we present the comparison between the proposed models, highlighting the advantages and disadvantages of the direct method based on different approaches for the analysis of wavelength-resolved neutron transmission experiments of textured materials. Finally, we present the future trends in the inversion method, i.e., the estimation of the ODFs from transmission spectra in tomography experiments.Fil: Malamud, F.. Paul Scherrer Institute; SuizaFil: Vicente Alvarez, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Santisteban, Javier Roberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Strobl, M.. Paul Scherrer Institute; SuizaElsevier Science Inc.2025-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/272835Malamud, F.; Vicente Alvarez, Miguel Angel; Santisteban, Javier Roberto; Strobl, M.; Wavelength-resolved neutron transmission analyses of textured materials; Elsevier Science Inc.; Materials Characterization; 223; 5-2025; 1-91044-5803CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S104458032500258Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.matchar.2025.114969info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:35:28Zoai:ri.conicet.gov.ar:11336/272835instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:35:28.345CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Wavelength-resolved neutron transmission analyses of textured materials
title Wavelength-resolved neutron transmission analyses of textured materials
spellingShingle Wavelength-resolved neutron transmission analyses of textured materials
Malamud, F.
textura
neutrones
transmision
TOF
title_short Wavelength-resolved neutron transmission analyses of textured materials
title_full Wavelength-resolved neutron transmission analyses of textured materials
title_fullStr Wavelength-resolved neutron transmission analyses of textured materials
title_full_unstemmed Wavelength-resolved neutron transmission analyses of textured materials
title_sort Wavelength-resolved neutron transmission analyses of textured materials
dc.creator.none.fl_str_mv Malamud, F.
Vicente Alvarez, Miguel Angel
Santisteban, Javier Roberto
Strobl, M.
author Malamud, F.
author_facet Malamud, F.
Vicente Alvarez, Miguel Angel
Santisteban, Javier Roberto
Strobl, M.
author_role author
author2 Vicente Alvarez, Miguel Angel
Santisteban, Javier Roberto
Strobl, M.
author2_role author
author
author
dc.subject.none.fl_str_mv textura
neutrones
transmision
TOF
topic textura
neutrones
transmision
TOF
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Wavelength-resolved neutron imaging for diffraction contrast often referred to as Bragg edge imaging is a neutron-based technique that has gained attention in recent years due to its promising ability to characterize the microstructure of polycrystalline materials with spatial resolution. This method relies on spatially resolved analyses of diffraction induced features in transmission spectra within the thermal neutron range. Assessable characteristics are e.g. phase fractions, lattice strains, and crystallographic texture. For the latter forward modelling of transmission spectra from known orientation distribution functions (ODFs) has been demonstrated for various materials. However, solving the inverse problem—retrieving crystallographic texture from transmission spectra—presents a more complex challenge. In recent years, the authors have developed two theoretical approaches to model the relationship between transmission spectra and texture, either by decomposing the ODF into individual orientation fractions or by expanding it into a Fourier series. Both approaches have shown excellent predictive capability for materials with different crystal symmetries, including hexagonal, FCC, and BCC structures. Here we present the comparison between the proposed models, highlighting the advantages and disadvantages of the direct method based on different approaches for the analysis of wavelength-resolved neutron transmission experiments of textured materials. Finally, we present the future trends in the inversion method, i.e., the estimation of the ODFs from transmission spectra in tomography experiments.
Fil: Malamud, F.. Paul Scherrer Institute; Suiza
Fil: Vicente Alvarez, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Santisteban, Javier Roberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Strobl, M.. Paul Scherrer Institute; Suiza
description Wavelength-resolved neutron imaging for diffraction contrast often referred to as Bragg edge imaging is a neutron-based technique that has gained attention in recent years due to its promising ability to characterize the microstructure of polycrystalline materials with spatial resolution. This method relies on spatially resolved analyses of diffraction induced features in transmission spectra within the thermal neutron range. Assessable characteristics are e.g. phase fractions, lattice strains, and crystallographic texture. For the latter forward modelling of transmission spectra from known orientation distribution functions (ODFs) has been demonstrated for various materials. However, solving the inverse problem—retrieving crystallographic texture from transmission spectra—presents a more complex challenge. In recent years, the authors have developed two theoretical approaches to model the relationship between transmission spectra and texture, either by decomposing the ODF into individual orientation fractions or by expanding it into a Fourier series. Both approaches have shown excellent predictive capability for materials with different crystal symmetries, including hexagonal, FCC, and BCC structures. Here we present the comparison between the proposed models, highlighting the advantages and disadvantages of the direct method based on different approaches for the analysis of wavelength-resolved neutron transmission experiments of textured materials. Finally, we present the future trends in the inversion method, i.e., the estimation of the ODFs from transmission spectra in tomography experiments.
publishDate 2025
dc.date.none.fl_str_mv 2025-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/272835
Malamud, F.; Vicente Alvarez, Miguel Angel; Santisteban, Javier Roberto; Strobl, M.; Wavelength-resolved neutron transmission analyses of textured materials; Elsevier Science Inc.; Materials Characterization; 223; 5-2025; 1-9
1044-5803
CONICET Digital
CONICET
url http://hdl.handle.net/11336/272835
identifier_str_mv Malamud, F.; Vicente Alvarez, Miguel Angel; Santisteban, Javier Roberto; Strobl, M.; Wavelength-resolved neutron transmission analyses of textured materials; Elsevier Science Inc.; Materials Characterization; 223; 5-2025; 1-9
1044-5803
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S104458032500258X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.matchar.2025.114969
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc.
publisher.none.fl_str_mv Elsevier Science Inc.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082814015963136
score 13.22299