Wavelength-resolved neutron transmission analyses of textured materials
- Autores
- Malamud, F.; Vicente Alvarez, Miguel Angel; Santisteban, Javier Roberto; Strobl, M.
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Wavelength-resolved neutron imaging for diffraction contrast often referred to as Bragg edge imaging is a neutron-based technique that has gained attention in recent years due to its promising ability to characterize the microstructure of polycrystalline materials with spatial resolution. This method relies on spatially resolved analyses of diffraction induced features in transmission spectra within the thermal neutron range. Assessable characteristics are e.g. phase fractions, lattice strains, and crystallographic texture. For the latter forward modelling of transmission spectra from known orientation distribution functions (ODFs) has been demonstrated for various materials. However, solving the inverse problem—retrieving crystallographic texture from transmission spectra—presents a more complex challenge. In recent years, the authors have developed two theoretical approaches to model the relationship between transmission spectra and texture, either by decomposing the ODF into individual orientation fractions or by expanding it into a Fourier series. Both approaches have shown excellent predictive capability for materials with different crystal symmetries, including hexagonal, FCC, and BCC structures. Here we present the comparison between the proposed models, highlighting the advantages and disadvantages of the direct method based on different approaches for the analysis of wavelength-resolved neutron transmission experiments of textured materials. Finally, we present the future trends in the inversion method, i.e., the estimation of the ODFs from transmission spectra in tomography experiments.
Fil: Malamud, F.. Paul Scherrer Institute; Suiza
Fil: Vicente Alvarez, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Santisteban, Javier Roberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Strobl, M.. Paul Scherrer Institute; Suiza - Materia
-
textura
neutrones
transmision
TOF - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/272835
Ver los metadatos del registro completo
id |
CONICETDig_f8974f988c9a2ba4a2b17e6fceacafba |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/272835 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Wavelength-resolved neutron transmission analyses of textured materialsMalamud, F.Vicente Alvarez, Miguel AngelSantisteban, Javier RobertoStrobl, M.texturaneutronestransmisionTOFhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Wavelength-resolved neutron imaging for diffraction contrast often referred to as Bragg edge imaging is a neutron-based technique that has gained attention in recent years due to its promising ability to characterize the microstructure of polycrystalline materials with spatial resolution. This method relies on spatially resolved analyses of diffraction induced features in transmission spectra within the thermal neutron range. Assessable characteristics are e.g. phase fractions, lattice strains, and crystallographic texture. For the latter forward modelling of transmission spectra from known orientation distribution functions (ODFs) has been demonstrated for various materials. However, solving the inverse problem—retrieving crystallographic texture from transmission spectra—presents a more complex challenge. In recent years, the authors have developed two theoretical approaches to model the relationship between transmission spectra and texture, either by decomposing the ODF into individual orientation fractions or by expanding it into a Fourier series. Both approaches have shown excellent predictive capability for materials with different crystal symmetries, including hexagonal, FCC, and BCC structures. Here we present the comparison between the proposed models, highlighting the advantages and disadvantages of the direct method based on different approaches for the analysis of wavelength-resolved neutron transmission experiments of textured materials. Finally, we present the future trends in the inversion method, i.e., the estimation of the ODFs from transmission spectra in tomography experiments.Fil: Malamud, F.. Paul Scherrer Institute; SuizaFil: Vicente Alvarez, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Santisteban, Javier Roberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Strobl, M.. Paul Scherrer Institute; SuizaElsevier Science Inc.2025-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/272835Malamud, F.; Vicente Alvarez, Miguel Angel; Santisteban, Javier Roberto; Strobl, M.; Wavelength-resolved neutron transmission analyses of textured materials; Elsevier Science Inc.; Materials Characterization; 223; 5-2025; 1-91044-5803CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S104458032500258Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.matchar.2025.114969info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:35:28Zoai:ri.conicet.gov.ar:11336/272835instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:35:28.345CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Wavelength-resolved neutron transmission analyses of textured materials |
title |
Wavelength-resolved neutron transmission analyses of textured materials |
spellingShingle |
Wavelength-resolved neutron transmission analyses of textured materials Malamud, F. textura neutrones transmision TOF |
title_short |
Wavelength-resolved neutron transmission analyses of textured materials |
title_full |
Wavelength-resolved neutron transmission analyses of textured materials |
title_fullStr |
Wavelength-resolved neutron transmission analyses of textured materials |
title_full_unstemmed |
Wavelength-resolved neutron transmission analyses of textured materials |
title_sort |
Wavelength-resolved neutron transmission analyses of textured materials |
dc.creator.none.fl_str_mv |
Malamud, F. Vicente Alvarez, Miguel Angel Santisteban, Javier Roberto Strobl, M. |
author |
Malamud, F. |
author_facet |
Malamud, F. Vicente Alvarez, Miguel Angel Santisteban, Javier Roberto Strobl, M. |
author_role |
author |
author2 |
Vicente Alvarez, Miguel Angel Santisteban, Javier Roberto Strobl, M. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
textura neutrones transmision TOF |
topic |
textura neutrones transmision TOF |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Wavelength-resolved neutron imaging for diffraction contrast often referred to as Bragg edge imaging is a neutron-based technique that has gained attention in recent years due to its promising ability to characterize the microstructure of polycrystalline materials with spatial resolution. This method relies on spatially resolved analyses of diffraction induced features in transmission spectra within the thermal neutron range. Assessable characteristics are e.g. phase fractions, lattice strains, and crystallographic texture. For the latter forward modelling of transmission spectra from known orientation distribution functions (ODFs) has been demonstrated for various materials. However, solving the inverse problem—retrieving crystallographic texture from transmission spectra—presents a more complex challenge. In recent years, the authors have developed two theoretical approaches to model the relationship between transmission spectra and texture, either by decomposing the ODF into individual orientation fractions or by expanding it into a Fourier series. Both approaches have shown excellent predictive capability for materials with different crystal symmetries, including hexagonal, FCC, and BCC structures. Here we present the comparison between the proposed models, highlighting the advantages and disadvantages of the direct method based on different approaches for the analysis of wavelength-resolved neutron transmission experiments of textured materials. Finally, we present the future trends in the inversion method, i.e., the estimation of the ODFs from transmission spectra in tomography experiments. Fil: Malamud, F.. Paul Scherrer Institute; Suiza Fil: Vicente Alvarez, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Santisteban, Javier Roberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Strobl, M.. Paul Scherrer Institute; Suiza |
description |
Wavelength-resolved neutron imaging for diffraction contrast often referred to as Bragg edge imaging is a neutron-based technique that has gained attention in recent years due to its promising ability to characterize the microstructure of polycrystalline materials with spatial resolution. This method relies on spatially resolved analyses of diffraction induced features in transmission spectra within the thermal neutron range. Assessable characteristics are e.g. phase fractions, lattice strains, and crystallographic texture. For the latter forward modelling of transmission spectra from known orientation distribution functions (ODFs) has been demonstrated for various materials. However, solving the inverse problem—retrieving crystallographic texture from transmission spectra—presents a more complex challenge. In recent years, the authors have developed two theoretical approaches to model the relationship between transmission spectra and texture, either by decomposing the ODF into individual orientation fractions or by expanding it into a Fourier series. Both approaches have shown excellent predictive capability for materials with different crystal symmetries, including hexagonal, FCC, and BCC structures. Here we present the comparison between the proposed models, highlighting the advantages and disadvantages of the direct method based on different approaches for the analysis of wavelength-resolved neutron transmission experiments of textured materials. Finally, we present the future trends in the inversion method, i.e., the estimation of the ODFs from transmission spectra in tomography experiments. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/272835 Malamud, F.; Vicente Alvarez, Miguel Angel; Santisteban, Javier Roberto; Strobl, M.; Wavelength-resolved neutron transmission analyses of textured materials; Elsevier Science Inc.; Materials Characterization; 223; 5-2025; 1-9 1044-5803 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/272835 |
identifier_str_mv |
Malamud, F.; Vicente Alvarez, Miguel Angel; Santisteban, Javier Roberto; Strobl, M.; Wavelength-resolved neutron transmission analyses of textured materials; Elsevier Science Inc.; Materials Characterization; 223; 5-2025; 1-9 1044-5803 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S104458032500258X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.matchar.2025.114969 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc. |
publisher.none.fl_str_mv |
Elsevier Science Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082814015963136 |
score |
13.22299 |