Grain structure and magnetic relaxation of self-assembled Co nanowires

Autores
Schio, P.; Bonilla, F. J.; Zheng, Y.; Demaille, D.; Milano, Julian; de Oliveira, A. J. A.; Vidal, F.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The magnetic relaxation of Co nanowires assemblies embedded in CeO2/SrTiO3(001) epilayers has been investigated by magnetization decay measurements. Two different samples were studied, with nanowires having distinct crystallographic structures and diameters of 3 and 5 nm. The structure of the nanowires was derived from high-resolution transmission electron microscopy analysis. The 3 nm diameter nanowires are made of hcp Co grains with the c-axis pointing along one of the four h111i directions of the CeO2 matrix, separated by fcc Co regions. In the 5 nm diameter nanowires, the grains are smaller and the density of stacking faults is much higher. The magnetic viscosity coefficient (S) of these two systems was measured as a function of the applied field and of the temperature. Analysis of the variation of S and of the activation volume for magnetization reversal reveals distinct behaviors for the two systems. In the nanowires assembly with 5 nm diameter, the results can be described by considering an energy barrier distribution related to shape anisotropy and are consistent with a thermally activated reversal of the magnetization. In contrast, the anomalous behavior of the 3 nm diameter wires indicates that additional sources of anisotropy have to be considered in order to describe the distribution of energy barriers and the reversal process. The distinct magnetic behaviors observed in these two systems can be rationalized by considering the grain structure of the nanowires and the resulting effective magnetocrystalline anisotropy.
Fil: Schio, P.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Universidade Federal do Sao Carlos; Brasil
Fil: Bonilla, F. J.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia
Fil: Zheng, Y.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Laboratoire International Franco-Argentin en Nanosciences; Argentina
Fil: Demaille, D.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia
Fil: Milano, Julian. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Laboratoire International Franco-Argentin en Nanosciences; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: de Oliveira, A. J. A. . Universidade Federal do Sao Carlos; Brasil
Fil: Vidal, F.. Laboratoire International Franco-Argentin en Nanosciences; Argentina. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia
Materia
Magnetic Properties of Nanostructures
Self-Assembly
Quantum Wires
Magnetic Anisotropy
Magnetization Reversal Mechanisms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/11107

id CONICETDig_f86c156e2139ba2b0bc646495111cd3b
oai_identifier_str oai:ri.conicet.gov.ar:11336/11107
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Grain structure and magnetic relaxation of self-assembled Co nanowiresSchio, P.Bonilla, F. J.Zheng, Y.Demaille, D.Milano, Juliande Oliveira, A. J. A. Vidal, F.Magnetic Properties of NanostructuresSelf-AssemblyQuantum WiresMagnetic AnisotropyMagnetization Reversal Mechanismshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2The magnetic relaxation of Co nanowires assemblies embedded in CeO2/SrTiO3(001) epilayers has been investigated by magnetization decay measurements. Two different samples were studied, with nanowires having distinct crystallographic structures and diameters of 3 and 5 nm. The structure of the nanowires was derived from high-resolution transmission electron microscopy analysis. The 3 nm diameter nanowires are made of hcp Co grains with the c-axis pointing along one of the four h111i directions of the CeO2 matrix, separated by fcc Co regions. In the 5 nm diameter nanowires, the grains are smaller and the density of stacking faults is much higher. The magnetic viscosity coefficient (S) of these two systems was measured as a function of the applied field and of the temperature. Analysis of the variation of S and of the activation volume for magnetization reversal reveals distinct behaviors for the two systems. In the nanowires assembly with 5 nm diameter, the results can be described by considering an energy barrier distribution related to shape anisotropy and are consistent with a thermally activated reversal of the magnetization. In contrast, the anomalous behavior of the 3 nm diameter wires indicates that additional sources of anisotropy have to be considered in order to describe the distribution of energy barriers and the reversal process. The distinct magnetic behaviors observed in these two systems can be rationalized by considering the grain structure of the nanowires and the resulting effective magnetocrystalline anisotropy.Fil: Schio, P.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Universidade Federal do Sao Carlos; BrasilFil: Bonilla, F. J.. Universite de Paris Vi. Institut Des Nanosciences de Paris; FranciaFil: Zheng, Y.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Laboratoire International Franco-Argentin en Nanosciences; ArgentinaFil: Demaille, D.. Universite de Paris Vi. Institut Des Nanosciences de Paris; FranciaFil: Milano, Julian. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Laboratoire International Franco-Argentin en Nanosciences; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: de Oliveira, A. J. A. . Universidade Federal do Sao Carlos; BrasilFil: Vidal, F.. Laboratoire International Franco-Argentin en Nanosciences; Argentina. Universite de Paris Vi. Institut Des Nanosciences de Paris; FranciaIOP Publishing2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11107Schio, P.; Bonilla, F. J.; Zheng, Y.; Demaille, D.; Milano, Julian; et al.; Grain structure and magnetic relaxation of self-assembled Co nanowires; IOP Publishing; Journal of Physics: Condensed Matter; 25; 5; 1-2013; 56002-560020953-8984enginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/0953-8984/25/5/056002/info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-8984/25/5/056002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:47Zoai:ri.conicet.gov.ar:11336/11107instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:47.716CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Grain structure and magnetic relaxation of self-assembled Co nanowires
title Grain structure and magnetic relaxation of self-assembled Co nanowires
spellingShingle Grain structure and magnetic relaxation of self-assembled Co nanowires
Schio, P.
Magnetic Properties of Nanostructures
Self-Assembly
Quantum Wires
Magnetic Anisotropy
Magnetization Reversal Mechanisms
title_short Grain structure and magnetic relaxation of self-assembled Co nanowires
title_full Grain structure and magnetic relaxation of self-assembled Co nanowires
title_fullStr Grain structure and magnetic relaxation of self-assembled Co nanowires
title_full_unstemmed Grain structure and magnetic relaxation of self-assembled Co nanowires
title_sort Grain structure and magnetic relaxation of self-assembled Co nanowires
dc.creator.none.fl_str_mv Schio, P.
Bonilla, F. J.
Zheng, Y.
Demaille, D.
Milano, Julian
de Oliveira, A. J. A.
Vidal, F.
author Schio, P.
author_facet Schio, P.
Bonilla, F. J.
Zheng, Y.
Demaille, D.
Milano, Julian
de Oliveira, A. J. A.
Vidal, F.
author_role author
author2 Bonilla, F. J.
Zheng, Y.
Demaille, D.
Milano, Julian
de Oliveira, A. J. A.
Vidal, F.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Magnetic Properties of Nanostructures
Self-Assembly
Quantum Wires
Magnetic Anisotropy
Magnetization Reversal Mechanisms
topic Magnetic Properties of Nanostructures
Self-Assembly
Quantum Wires
Magnetic Anisotropy
Magnetization Reversal Mechanisms
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The magnetic relaxation of Co nanowires assemblies embedded in CeO2/SrTiO3(001) epilayers has been investigated by magnetization decay measurements. Two different samples were studied, with nanowires having distinct crystallographic structures and diameters of 3 and 5 nm. The structure of the nanowires was derived from high-resolution transmission electron microscopy analysis. The 3 nm diameter nanowires are made of hcp Co grains with the c-axis pointing along one of the four h111i directions of the CeO2 matrix, separated by fcc Co regions. In the 5 nm diameter nanowires, the grains are smaller and the density of stacking faults is much higher. The magnetic viscosity coefficient (S) of these two systems was measured as a function of the applied field and of the temperature. Analysis of the variation of S and of the activation volume for magnetization reversal reveals distinct behaviors for the two systems. In the nanowires assembly with 5 nm diameter, the results can be described by considering an energy barrier distribution related to shape anisotropy and are consistent with a thermally activated reversal of the magnetization. In contrast, the anomalous behavior of the 3 nm diameter wires indicates that additional sources of anisotropy have to be considered in order to describe the distribution of energy barriers and the reversal process. The distinct magnetic behaviors observed in these two systems can be rationalized by considering the grain structure of the nanowires and the resulting effective magnetocrystalline anisotropy.
Fil: Schio, P.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Universidade Federal do Sao Carlos; Brasil
Fil: Bonilla, F. J.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia
Fil: Zheng, Y.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Laboratoire International Franco-Argentin en Nanosciences; Argentina
Fil: Demaille, D.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia
Fil: Milano, Julian. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Laboratoire International Franco-Argentin en Nanosciences; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: de Oliveira, A. J. A. . Universidade Federal do Sao Carlos; Brasil
Fil: Vidal, F.. Laboratoire International Franco-Argentin en Nanosciences; Argentina. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia
description The magnetic relaxation of Co nanowires assemblies embedded in CeO2/SrTiO3(001) epilayers has been investigated by magnetization decay measurements. Two different samples were studied, with nanowires having distinct crystallographic structures and diameters of 3 and 5 nm. The structure of the nanowires was derived from high-resolution transmission electron microscopy analysis. The 3 nm diameter nanowires are made of hcp Co grains with the c-axis pointing along one of the four h111i directions of the CeO2 matrix, separated by fcc Co regions. In the 5 nm diameter nanowires, the grains are smaller and the density of stacking faults is much higher. The magnetic viscosity coefficient (S) of these two systems was measured as a function of the applied field and of the temperature. Analysis of the variation of S and of the activation volume for magnetization reversal reveals distinct behaviors for the two systems. In the nanowires assembly with 5 nm diameter, the results can be described by considering an energy barrier distribution related to shape anisotropy and are consistent with a thermally activated reversal of the magnetization. In contrast, the anomalous behavior of the 3 nm diameter wires indicates that additional sources of anisotropy have to be considered in order to describe the distribution of energy barriers and the reversal process. The distinct magnetic behaviors observed in these two systems can be rationalized by considering the grain structure of the nanowires and the resulting effective magnetocrystalline anisotropy.
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/11107
Schio, P.; Bonilla, F. J.; Zheng, Y.; Demaille, D.; Milano, Julian; et al.; Grain structure and magnetic relaxation of self-assembled Co nanowires; IOP Publishing; Journal of Physics: Condensed Matter; 25; 5; 1-2013; 56002-56002
0953-8984
url http://hdl.handle.net/11336/11107
identifier_str_mv Schio, P.; Bonilla, F. J.; Zheng, Y.; Demaille, D.; Milano, Julian; et al.; Grain structure and magnetic relaxation of self-assembled Co nanowires; IOP Publishing; Journal of Physics: Condensed Matter; 25; 5; 1-2013; 56002-56002
0953-8984
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/0953-8984/25/5/056002/
info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-8984/25/5/056002
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613941842411520
score 13.070432