Grain structure and magnetic relaxation of self-assembled Co nanowires
- Autores
- Schio, P.; Bonilla, F. J.; Zheng, Y.; Demaille, D.; Milano, Julian; de Oliveira, A. J. A.; Vidal, F.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The magnetic relaxation of Co nanowires assemblies embedded in CeO2/SrTiO3(001) epilayers has been investigated by magnetization decay measurements. Two different samples were studied, with nanowires having distinct crystallographic structures and diameters of 3 and 5 nm. The structure of the nanowires was derived from high-resolution transmission electron microscopy analysis. The 3 nm diameter nanowires are made of hcp Co grains with the c-axis pointing along one of the four h111i directions of the CeO2 matrix, separated by fcc Co regions. In the 5 nm diameter nanowires, the grains are smaller and the density of stacking faults is much higher. The magnetic viscosity coefficient (S) of these two systems was measured as a function of the applied field and of the temperature. Analysis of the variation of S and of the activation volume for magnetization reversal reveals distinct behaviors for the two systems. In the nanowires assembly with 5 nm diameter, the results can be described by considering an energy barrier distribution related to shape anisotropy and are consistent with a thermally activated reversal of the magnetization. In contrast, the anomalous behavior of the 3 nm diameter wires indicates that additional sources of anisotropy have to be considered in order to describe the distribution of energy barriers and the reversal process. The distinct magnetic behaviors observed in these two systems can be rationalized by considering the grain structure of the nanowires and the resulting effective magnetocrystalline anisotropy.
Fil: Schio, P.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Universidade Federal do Sao Carlos; Brasil
Fil: Bonilla, F. J.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia
Fil: Zheng, Y.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Laboratoire International Franco-Argentin en Nanosciences; Argentina
Fil: Demaille, D.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia
Fil: Milano, Julian. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Laboratoire International Franco-Argentin en Nanosciences; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: de Oliveira, A. J. A. . Universidade Federal do Sao Carlos; Brasil
Fil: Vidal, F.. Laboratoire International Franco-Argentin en Nanosciences; Argentina. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia - Materia
-
Magnetic Properties of Nanostructures
Self-Assembly
Quantum Wires
Magnetic Anisotropy
Magnetization Reversal Mechanisms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11107
Ver los metadatos del registro completo
id |
CONICETDig_f86c156e2139ba2b0bc646495111cd3b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11107 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Grain structure and magnetic relaxation of self-assembled Co nanowiresSchio, P.Bonilla, F. J.Zheng, Y.Demaille, D.Milano, Juliande Oliveira, A. J. A. Vidal, F.Magnetic Properties of NanostructuresSelf-AssemblyQuantum WiresMagnetic AnisotropyMagnetization Reversal Mechanismshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2The magnetic relaxation of Co nanowires assemblies embedded in CeO2/SrTiO3(001) epilayers has been investigated by magnetization decay measurements. Two different samples were studied, with nanowires having distinct crystallographic structures and diameters of 3 and 5 nm. The structure of the nanowires was derived from high-resolution transmission electron microscopy analysis. The 3 nm diameter nanowires are made of hcp Co grains with the c-axis pointing along one of the four h111i directions of the CeO2 matrix, separated by fcc Co regions. In the 5 nm diameter nanowires, the grains are smaller and the density of stacking faults is much higher. The magnetic viscosity coefficient (S) of these two systems was measured as a function of the applied field and of the temperature. Analysis of the variation of S and of the activation volume for magnetization reversal reveals distinct behaviors for the two systems. In the nanowires assembly with 5 nm diameter, the results can be described by considering an energy barrier distribution related to shape anisotropy and are consistent with a thermally activated reversal of the magnetization. In contrast, the anomalous behavior of the 3 nm diameter wires indicates that additional sources of anisotropy have to be considered in order to describe the distribution of energy barriers and the reversal process. The distinct magnetic behaviors observed in these two systems can be rationalized by considering the grain structure of the nanowires and the resulting effective magnetocrystalline anisotropy.Fil: Schio, P.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Universidade Federal do Sao Carlos; BrasilFil: Bonilla, F. J.. Universite de Paris Vi. Institut Des Nanosciences de Paris; FranciaFil: Zheng, Y.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Laboratoire International Franco-Argentin en Nanosciences; ArgentinaFil: Demaille, D.. Universite de Paris Vi. Institut Des Nanosciences de Paris; FranciaFil: Milano, Julian. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Laboratoire International Franco-Argentin en Nanosciences; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: de Oliveira, A. J. A. . Universidade Federal do Sao Carlos; BrasilFil: Vidal, F.. Laboratoire International Franco-Argentin en Nanosciences; Argentina. Universite de Paris Vi. Institut Des Nanosciences de Paris; FranciaIOP Publishing2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11107Schio, P.; Bonilla, F. J.; Zheng, Y.; Demaille, D.; Milano, Julian; et al.; Grain structure and magnetic relaxation of self-assembled Co nanowires; IOP Publishing; Journal of Physics: Condensed Matter; 25; 5; 1-2013; 56002-560020953-8984enginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/0953-8984/25/5/056002/info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-8984/25/5/056002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:47Zoai:ri.conicet.gov.ar:11336/11107instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:47.716CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Grain structure and magnetic relaxation of self-assembled Co nanowires |
title |
Grain structure and magnetic relaxation of self-assembled Co nanowires |
spellingShingle |
Grain structure and magnetic relaxation of self-assembled Co nanowires Schio, P. Magnetic Properties of Nanostructures Self-Assembly Quantum Wires Magnetic Anisotropy Magnetization Reversal Mechanisms |
title_short |
Grain structure and magnetic relaxation of self-assembled Co nanowires |
title_full |
Grain structure and magnetic relaxation of self-assembled Co nanowires |
title_fullStr |
Grain structure and magnetic relaxation of self-assembled Co nanowires |
title_full_unstemmed |
Grain structure and magnetic relaxation of self-assembled Co nanowires |
title_sort |
Grain structure and magnetic relaxation of self-assembled Co nanowires |
dc.creator.none.fl_str_mv |
Schio, P. Bonilla, F. J. Zheng, Y. Demaille, D. Milano, Julian de Oliveira, A. J. A. Vidal, F. |
author |
Schio, P. |
author_facet |
Schio, P. Bonilla, F. J. Zheng, Y. Demaille, D. Milano, Julian de Oliveira, A. J. A. Vidal, F. |
author_role |
author |
author2 |
Bonilla, F. J. Zheng, Y. Demaille, D. Milano, Julian de Oliveira, A. J. A. Vidal, F. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Magnetic Properties of Nanostructures Self-Assembly Quantum Wires Magnetic Anisotropy Magnetization Reversal Mechanisms |
topic |
Magnetic Properties of Nanostructures Self-Assembly Quantum Wires Magnetic Anisotropy Magnetization Reversal Mechanisms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The magnetic relaxation of Co nanowires assemblies embedded in CeO2/SrTiO3(001) epilayers has been investigated by magnetization decay measurements. Two different samples were studied, with nanowires having distinct crystallographic structures and diameters of 3 and 5 nm. The structure of the nanowires was derived from high-resolution transmission electron microscopy analysis. The 3 nm diameter nanowires are made of hcp Co grains with the c-axis pointing along one of the four h111i directions of the CeO2 matrix, separated by fcc Co regions. In the 5 nm diameter nanowires, the grains are smaller and the density of stacking faults is much higher. The magnetic viscosity coefficient (S) of these two systems was measured as a function of the applied field and of the temperature. Analysis of the variation of S and of the activation volume for magnetization reversal reveals distinct behaviors for the two systems. In the nanowires assembly with 5 nm diameter, the results can be described by considering an energy barrier distribution related to shape anisotropy and are consistent with a thermally activated reversal of the magnetization. In contrast, the anomalous behavior of the 3 nm diameter wires indicates that additional sources of anisotropy have to be considered in order to describe the distribution of energy barriers and the reversal process. The distinct magnetic behaviors observed in these two systems can be rationalized by considering the grain structure of the nanowires and the resulting effective magnetocrystalline anisotropy. Fil: Schio, P.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Universidade Federal do Sao Carlos; Brasil Fil: Bonilla, F. J.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia Fil: Zheng, Y.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Laboratoire International Franco-Argentin en Nanosciences; Argentina Fil: Demaille, D.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia Fil: Milano, Julian. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Laboratoire International Franco-Argentin en Nanosciences; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; Argentina Fil: de Oliveira, A. J. A. . Universidade Federal do Sao Carlos; Brasil Fil: Vidal, F.. Laboratoire International Franco-Argentin en Nanosciences; Argentina. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia |
description |
The magnetic relaxation of Co nanowires assemblies embedded in CeO2/SrTiO3(001) epilayers has been investigated by magnetization decay measurements. Two different samples were studied, with nanowires having distinct crystallographic structures and diameters of 3 and 5 nm. The structure of the nanowires was derived from high-resolution transmission electron microscopy analysis. The 3 nm diameter nanowires are made of hcp Co grains with the c-axis pointing along one of the four h111i directions of the CeO2 matrix, separated by fcc Co regions. In the 5 nm diameter nanowires, the grains are smaller and the density of stacking faults is much higher. The magnetic viscosity coefficient (S) of these two systems was measured as a function of the applied field and of the temperature. Analysis of the variation of S and of the activation volume for magnetization reversal reveals distinct behaviors for the two systems. In the nanowires assembly with 5 nm diameter, the results can be described by considering an energy barrier distribution related to shape anisotropy and are consistent with a thermally activated reversal of the magnetization. In contrast, the anomalous behavior of the 3 nm diameter wires indicates that additional sources of anisotropy have to be considered in order to describe the distribution of energy barriers and the reversal process. The distinct magnetic behaviors observed in these two systems can be rationalized by considering the grain structure of the nanowires and the resulting effective magnetocrystalline anisotropy. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11107 Schio, P.; Bonilla, F. J.; Zheng, Y.; Demaille, D.; Milano, Julian; et al.; Grain structure and magnetic relaxation of self-assembled Co nanowires; IOP Publishing; Journal of Physics: Condensed Matter; 25; 5; 1-2013; 56002-56002 0953-8984 |
url |
http://hdl.handle.net/11336/11107 |
identifier_str_mv |
Schio, P.; Bonilla, F. J.; Zheng, Y.; Demaille, D.; Milano, Julian; et al.; Grain structure and magnetic relaxation of self-assembled Co nanowires; IOP Publishing; Journal of Physics: Condensed Matter; 25; 5; 1-2013; 56002-56002 0953-8984 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/0953-8984/25/5/056002/ info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-8984/25/5/056002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613941842411520 |
score |
13.070432 |