Extremal properties and bounds for the generalized algebraic connectivity of graphs in Euclidean spaces
- Autores
- Alvarez Hamelin, José Ignacio; Giribet, Juan Ignacio; Mas, Ignacio Agustin; Presenza, Juan Francisco
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Graph rigidity—the study of vertex realizations in ℝ d and the motions that preserve the induced edge lengths—has been the focus of extensive research for decades. Its equivalency to graph connectivity for d = 1 is well known; thus it can be viewed as a generalization that incorporates geometric constraints. Graph connectivity is commonly quantified by the algebraic connectivity, the second-smallest eigenvalue of the Laplacian matrix. Recently, a graph invariant for quantifying graph rigidity in ℝ d , termed the generalized algebraic connectivity, was introduced. Recognizing the intrinsic relationship between rigidity and connectivity, this article presents new contributions. In particular, we introduce the d -rigidity ratio as a metric for expressing the level of rigidity of a graph in ℝ d relative to its connectivity. We show that this ratio is bounded and provide extremal examples. Additionally, we offer a new upper bound for the generalized algebraic connectivity that depends inversely on the diameter and on the vertex connectivity, thereby improving previous bounds. Moreover, we investigate the relationship between graph rigidity and the diameter—a measure of the graph’s overall extent. We provide the maximal diameter achievable by rigid graphs and show that generalized path graphs serve as extremal examples. Finally, we derive an upper bound for the generalized algebraic connectivity of generalized path graphs that (asymptotically) improves upon existing ones by a factor of four.
Fil: Alvarez Hamelin, José Ignacio. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Fil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mas, Ignacio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Presenza, Juan Francisco. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina - Materia
-
graph rigidity
control applications - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/277989
Ver los metadatos del registro completo
| id |
CONICETDig_f84b6449980624d8804a4b6898e3ae33 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/277989 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Extremal properties and bounds for the generalized algebraic connectivity of graphs in Euclidean spacesAlvarez Hamelin, José IgnacioGiribet, Juan IgnacioMas, Ignacio AgustinPresenza, Juan Franciscograph rigiditycontrol applicationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Graph rigidity—the study of vertex realizations in ℝ d and the motions that preserve the induced edge lengths—has been the focus of extensive research for decades. Its equivalency to graph connectivity for d = 1 is well known; thus it can be viewed as a generalization that incorporates geometric constraints. Graph connectivity is commonly quantified by the algebraic connectivity, the second-smallest eigenvalue of the Laplacian matrix. Recently, a graph invariant for quantifying graph rigidity in ℝ d , termed the generalized algebraic connectivity, was introduced. Recognizing the intrinsic relationship between rigidity and connectivity, this article presents new contributions. In particular, we introduce the d -rigidity ratio as a metric for expressing the level of rigidity of a graph in ℝ d relative to its connectivity. We show that this ratio is bounded and provide extremal examples. Additionally, we offer a new upper bound for the generalized algebraic connectivity that depends inversely on the diameter and on the vertex connectivity, thereby improving previous bounds. Moreover, we investigate the relationship between graph rigidity and the diameter—a measure of the graph’s overall extent. We provide the maximal diameter achievable by rigid graphs and show that generalized path graphs serve as extremal examples. Finally, we derive an upper bound for the generalized algebraic connectivity of generalized path graphs that (asymptotically) improves upon existing ones by a factor of four.Fil: Alvarez Hamelin, José Ignacio. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mas, Ignacio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Presenza, Juan Francisco. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaElsevier Science Inc.2025-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/277989Alvarez Hamelin, José Ignacio; Giribet, Juan Ignacio; Mas, Ignacio Agustin; Presenza, Juan Francisco; Extremal properties and bounds for the generalized algebraic connectivity of graphs in Euclidean spaces; Elsevier Science Inc.; Linear Algebra and its Applications; 727; 12-2025; 24-360024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0024379525003192info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2025.07.028info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2505.16015v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:37:06Zoai:ri.conicet.gov.ar:11336/277989instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:37:07.12CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Extremal properties and bounds for the generalized algebraic connectivity of graphs in Euclidean spaces |
| title |
Extremal properties and bounds for the generalized algebraic connectivity of graphs in Euclidean spaces |
| spellingShingle |
Extremal properties and bounds for the generalized algebraic connectivity of graphs in Euclidean spaces Alvarez Hamelin, José Ignacio graph rigidity control applications |
| title_short |
Extremal properties and bounds for the generalized algebraic connectivity of graphs in Euclidean spaces |
| title_full |
Extremal properties and bounds for the generalized algebraic connectivity of graphs in Euclidean spaces |
| title_fullStr |
Extremal properties and bounds for the generalized algebraic connectivity of graphs in Euclidean spaces |
| title_full_unstemmed |
Extremal properties and bounds for the generalized algebraic connectivity of graphs in Euclidean spaces |
| title_sort |
Extremal properties and bounds for the generalized algebraic connectivity of graphs in Euclidean spaces |
| dc.creator.none.fl_str_mv |
Alvarez Hamelin, José Ignacio Giribet, Juan Ignacio Mas, Ignacio Agustin Presenza, Juan Francisco |
| author |
Alvarez Hamelin, José Ignacio |
| author_facet |
Alvarez Hamelin, José Ignacio Giribet, Juan Ignacio Mas, Ignacio Agustin Presenza, Juan Francisco |
| author_role |
author |
| author2 |
Giribet, Juan Ignacio Mas, Ignacio Agustin Presenza, Juan Francisco |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
graph rigidity control applications |
| topic |
graph rigidity control applications |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Graph rigidity—the study of vertex realizations in ℝ d and the motions that preserve the induced edge lengths—has been the focus of extensive research for decades. Its equivalency to graph connectivity for d = 1 is well known; thus it can be viewed as a generalization that incorporates geometric constraints. Graph connectivity is commonly quantified by the algebraic connectivity, the second-smallest eigenvalue of the Laplacian matrix. Recently, a graph invariant for quantifying graph rigidity in ℝ d , termed the generalized algebraic connectivity, was introduced. Recognizing the intrinsic relationship between rigidity and connectivity, this article presents new contributions. In particular, we introduce the d -rigidity ratio as a metric for expressing the level of rigidity of a graph in ℝ d relative to its connectivity. We show that this ratio is bounded and provide extremal examples. Additionally, we offer a new upper bound for the generalized algebraic connectivity that depends inversely on the diameter and on the vertex connectivity, thereby improving previous bounds. Moreover, we investigate the relationship between graph rigidity and the diameter—a measure of the graph’s overall extent. We provide the maximal diameter achievable by rigid graphs and show that generalized path graphs serve as extremal examples. Finally, we derive an upper bound for the generalized algebraic connectivity of generalized path graphs that (asymptotically) improves upon existing ones by a factor of four. Fil: Alvarez Hamelin, José Ignacio. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina Fil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Mas, Ignacio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Presenza, Juan Francisco. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina |
| description |
Graph rigidity—the study of vertex realizations in ℝ d and the motions that preserve the induced edge lengths—has been the focus of extensive research for decades. Its equivalency to graph connectivity for d = 1 is well known; thus it can be viewed as a generalization that incorporates geometric constraints. Graph connectivity is commonly quantified by the algebraic connectivity, the second-smallest eigenvalue of the Laplacian matrix. Recently, a graph invariant for quantifying graph rigidity in ℝ d , termed the generalized algebraic connectivity, was introduced. Recognizing the intrinsic relationship between rigidity and connectivity, this article presents new contributions. In particular, we introduce the d -rigidity ratio as a metric for expressing the level of rigidity of a graph in ℝ d relative to its connectivity. We show that this ratio is bounded and provide extremal examples. Additionally, we offer a new upper bound for the generalized algebraic connectivity that depends inversely on the diameter and on the vertex connectivity, thereby improving previous bounds. Moreover, we investigate the relationship between graph rigidity and the diameter—a measure of the graph’s overall extent. We provide the maximal diameter achievable by rigid graphs and show that generalized path graphs serve as extremal examples. Finally, we derive an upper bound for the generalized algebraic connectivity of generalized path graphs that (asymptotically) improves upon existing ones by a factor of four. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/277989 Alvarez Hamelin, José Ignacio; Giribet, Juan Ignacio; Mas, Ignacio Agustin; Presenza, Juan Francisco; Extremal properties and bounds for the generalized algebraic connectivity of graphs in Euclidean spaces; Elsevier Science Inc.; Linear Algebra and its Applications; 727; 12-2025; 24-36 0024-3795 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/277989 |
| identifier_str_mv |
Alvarez Hamelin, José Ignacio; Giribet, Juan Ignacio; Mas, Ignacio Agustin; Presenza, Juan Francisco; Extremal properties and bounds for the generalized algebraic connectivity of graphs in Euclidean spaces; Elsevier Science Inc.; Linear Algebra and its Applications; 727; 12-2025; 24-36 0024-3795 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0024379525003192 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2025.07.028 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2505.16015v1 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science Inc. |
| publisher.none.fl_str_mv |
Elsevier Science Inc. |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335262608130048 |
| score |
12.952241 |