Commentary: Optical nanoantennas: From communications to super-resolution
- Autores
- Skigin, Diana Carina; Lester, Marcelo Fabian
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- As silicon is the basis of conventional electronics, so strontium titanate (SrTiO3) is the foundation of the emerging field of oxide electronics1,2. SrTiO3 is the preferred template for the creation of exotic, two-dimensional (2D) phases of electron matter at oxide interfaces3–5 that have metal–insulator transitions6,7, superconductivity8,9 or large negative magnetoresistance10. However, the physical nature of the electronic structure underlying these 2D electron gases (2DEGs), which is crucial to understanding their remarkable properties11,12, remains elusive. Here we show, using angle-resolved photoemission spectroscopy, that there is a highly metallic universal 2DEG at the vacuum-cleaved surface of SrTiO3 (including the non-doped insulating material) independently of bulk carrier densities over more than seven decades. This 2DEG is confined within a region of about five unit cells and has a sheet carrier density of 0.33 electrons per square lattice parameter. The electronic structure consists of multiple subbands of heavy and light electrons. The similarity of this 2DEG to those reported in SrTiO3-based heterostructures6,8,13 and field-effect transistors9,14 suggests that different forms of electron confinement at the surface of SrTiO3 lead to essentially the same 2DEG. Our discovery provides a model system for the study of the electronic structure of 2DEGs in SrTiO3-based devices and a novel means of generating 2DEGs at the surfaces of transition-metal oxides
Fil: Skigin, Diana Carina. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lester, Marcelo Fabian. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina - Materia
-
nanoantennas
Plasmonics
optical resonances - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/57183
Ver los metadatos del registro completo
id |
CONICETDig_f7a4eb6b6b86eb546b5873ab39a5d10c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/57183 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Commentary: Optical nanoantennas: From communications to super-resolutionSkigin, Diana CarinaLester, Marcelo FabiannanoantennasPlasmonicsoptical resonanceshttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2As silicon is the basis of conventional electronics, so strontium titanate (SrTiO3) is the foundation of the emerging field of oxide electronics1,2. SrTiO3 is the preferred template for the creation of exotic, two-dimensional (2D) phases of electron matter at oxide interfaces3–5 that have metal–insulator transitions6,7, superconductivity8,9 or large negative magnetoresistance10. However, the physical nature of the electronic structure underlying these 2D electron gases (2DEGs), which is crucial to understanding their remarkable properties11,12, remains elusive. Here we show, using angle-resolved photoemission spectroscopy, that there is a highly metallic universal 2DEG at the vacuum-cleaved surface of SrTiO3 (including the non-doped insulating material) independently of bulk carrier densities over more than seven decades. This 2DEG is confined within a region of about five unit cells and has a sheet carrier density of 0.33 electrons per square lattice parameter. The electronic structure consists of multiple subbands of heavy and light electrons. The similarity of this 2DEG to those reported in SrTiO3-based heterostructures6,8,13 and field-effect transistors9,14 suggests that different forms of electron confinement at the surface of SrTiO3 lead to essentially the same 2DEG. Our discovery provides a model system for the study of the electronic structure of 2DEGs in SrTiO3-based devices and a novel means of generating 2DEGs at the surfaces of transition-metal oxidesFil: Skigin, Diana Carina. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Lester, Marcelo Fabian. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; ArgentinaSociety of Photo-Optical Instrumentation Engineers2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57183Skigin, Diana Carina; Lester, Marcelo Fabian; Commentary: Optical nanoantennas: From communications to super-resolution; Society of Photo-Optical Instrumentation Engineers; Journal Of Nanophotonics; 5; 1; 6-2011; 1-41934-2608CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1117/1.3595688info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:12Zoai:ri.conicet.gov.ar:11336/57183instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:13.172CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Commentary: Optical nanoantennas: From communications to super-resolution |
title |
Commentary: Optical nanoantennas: From communications to super-resolution |
spellingShingle |
Commentary: Optical nanoantennas: From communications to super-resolution Skigin, Diana Carina nanoantennas Plasmonics optical resonances |
title_short |
Commentary: Optical nanoantennas: From communications to super-resolution |
title_full |
Commentary: Optical nanoantennas: From communications to super-resolution |
title_fullStr |
Commentary: Optical nanoantennas: From communications to super-resolution |
title_full_unstemmed |
Commentary: Optical nanoantennas: From communications to super-resolution |
title_sort |
Commentary: Optical nanoantennas: From communications to super-resolution |
dc.creator.none.fl_str_mv |
Skigin, Diana Carina Lester, Marcelo Fabian |
author |
Skigin, Diana Carina |
author_facet |
Skigin, Diana Carina Lester, Marcelo Fabian |
author_role |
author |
author2 |
Lester, Marcelo Fabian |
author2_role |
author |
dc.subject.none.fl_str_mv |
nanoantennas Plasmonics optical resonances |
topic |
nanoantennas Plasmonics optical resonances |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
As silicon is the basis of conventional electronics, so strontium titanate (SrTiO3) is the foundation of the emerging field of oxide electronics1,2. SrTiO3 is the preferred template for the creation of exotic, two-dimensional (2D) phases of electron matter at oxide interfaces3–5 that have metal–insulator transitions6,7, superconductivity8,9 or large negative magnetoresistance10. However, the physical nature of the electronic structure underlying these 2D electron gases (2DEGs), which is crucial to understanding their remarkable properties11,12, remains elusive. Here we show, using angle-resolved photoemission spectroscopy, that there is a highly metallic universal 2DEG at the vacuum-cleaved surface of SrTiO3 (including the non-doped insulating material) independently of bulk carrier densities over more than seven decades. This 2DEG is confined within a region of about five unit cells and has a sheet carrier density of 0.33 electrons per square lattice parameter. The electronic structure consists of multiple subbands of heavy and light electrons. The similarity of this 2DEG to those reported in SrTiO3-based heterostructures6,8,13 and field-effect transistors9,14 suggests that different forms of electron confinement at the surface of SrTiO3 lead to essentially the same 2DEG. Our discovery provides a model system for the study of the electronic structure of 2DEGs in SrTiO3-based devices and a novel means of generating 2DEGs at the surfaces of transition-metal oxides Fil: Skigin, Diana Carina. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Lester, Marcelo Fabian. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina |
description |
As silicon is the basis of conventional electronics, so strontium titanate (SrTiO3) is the foundation of the emerging field of oxide electronics1,2. SrTiO3 is the preferred template for the creation of exotic, two-dimensional (2D) phases of electron matter at oxide interfaces3–5 that have metal–insulator transitions6,7, superconductivity8,9 or large negative magnetoresistance10. However, the physical nature of the electronic structure underlying these 2D electron gases (2DEGs), which is crucial to understanding their remarkable properties11,12, remains elusive. Here we show, using angle-resolved photoemission spectroscopy, that there is a highly metallic universal 2DEG at the vacuum-cleaved surface of SrTiO3 (including the non-doped insulating material) independently of bulk carrier densities over more than seven decades. This 2DEG is confined within a region of about five unit cells and has a sheet carrier density of 0.33 electrons per square lattice parameter. The electronic structure consists of multiple subbands of heavy and light electrons. The similarity of this 2DEG to those reported in SrTiO3-based heterostructures6,8,13 and field-effect transistors9,14 suggests that different forms of electron confinement at the surface of SrTiO3 lead to essentially the same 2DEG. Our discovery provides a model system for the study of the electronic structure of 2DEGs in SrTiO3-based devices and a novel means of generating 2DEGs at the surfaces of transition-metal oxides |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/57183 Skigin, Diana Carina; Lester, Marcelo Fabian; Commentary: Optical nanoantennas: From communications to super-resolution; Society of Photo-Optical Instrumentation Engineers; Journal Of Nanophotonics; 5; 1; 6-2011; 1-4 1934-2608 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/57183 |
identifier_str_mv |
Skigin, Diana Carina; Lester, Marcelo Fabian; Commentary: Optical nanoantennas: From communications to super-resolution; Society of Photo-Optical Instrumentation Engineers; Journal Of Nanophotonics; 5; 1; 6-2011; 1-4 1934-2608 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1117/1.3595688 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Society of Photo-Optical Instrumentation Engineers |
publisher.none.fl_str_mv |
Society of Photo-Optical Instrumentation Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269683382747136 |
score |
12.885934 |