On the assumed inherent stability of semi-active control systems
- Autores
- Garrido, Carlos Hernán; Curadelli, Raul Oscar; Ambrosini, Ricardo Daniel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Vibration control systems are usually classified into: passive, active and semi-active. Semi-active control systems are based on formerly passive mechanical devices, such as springs and dampers, whose characteristics are adjusted in real-time by active means. The attractiveness of semi-active control systems mainly relies on their assumed “inherent stability”, which makes them almost as reliable and fault-tolerant as passive control systems. The present paper shows that these assumptions are only partially true, by applying passivity formalism and bounded-input bounded-output stability definitions. Based on this study, semi-active control devices are rationally classified into three classes with two subclasses each: (1.1) non-negative variable-damping dampers, (1.2) possibly-negative variable-damping dampers, (2.1) independently-variable-stiffness springs, (2.2) resettable-stiffness springs, (3.1) independently-variable-inertance inerters, and (3.2) resettable-inertance inerters. It is found that a control system using any of the semi-active control devices of type (1.2), (2.1) or (3.1) is not inherently stable, as it is assumed in some previous papers; because those devices are “active” from the perspective of the passivity formalism. Interestingly, hybrid combinations of independently-variable-inertance inerters with non-negative variable-damping dampers can be designed to produce inherently-stable control systems. Following this framework, several published works on semi-active control systems are reviewed and classified. The presented methodology is useful when developing new devices. This is demonstrated by proposing a novel control device, which is classified and assessed in terms of inherent passivity. Moreover, this passivity assessment is conveniently used to propose a control law for the device. Finally, a frame structure controlled by the device is numerically simulated through a number of scenarios including instability and a countermeasure for its mitigation.
Fil: Garrido, Carlos Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: Curadelli, Raul Oscar. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ambrosini, Ricardo Daniel. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
BIBO STABILITY
INHERENT STABILITY
PASSIVITY
SEMI-ACTIVE CONTROL
VARIABLE DAMPING
VARIABLE INERTANCE
VARIABLE STIFFNESS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96334
Ver los metadatos del registro completo
id |
CONICETDig_f75a776fb0e622a7411af2640ffaf350 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96334 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the assumed inherent stability of semi-active control systemsGarrido, Carlos HernánCuradelli, Raul OscarAmbrosini, Ricardo DanielBIBO STABILITYINHERENT STABILITYPASSIVITYSEMI-ACTIVE CONTROLVARIABLE DAMPINGVARIABLE INERTANCEVARIABLE STIFFNESShttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2Vibration control systems are usually classified into: passive, active and semi-active. Semi-active control systems are based on formerly passive mechanical devices, such as springs and dampers, whose characteristics are adjusted in real-time by active means. The attractiveness of semi-active control systems mainly relies on their assumed “inherent stability”, which makes them almost as reliable and fault-tolerant as passive control systems. The present paper shows that these assumptions are only partially true, by applying passivity formalism and bounded-input bounded-output stability definitions. Based on this study, semi-active control devices are rationally classified into three classes with two subclasses each: (1.1) non-negative variable-damping dampers, (1.2) possibly-negative variable-damping dampers, (2.1) independently-variable-stiffness springs, (2.2) resettable-stiffness springs, (3.1) independently-variable-inertance inerters, and (3.2) resettable-inertance inerters. It is found that a control system using any of the semi-active control devices of type (1.2), (2.1) or (3.1) is not inherently stable, as it is assumed in some previous papers; because those devices are “active” from the perspective of the passivity formalism. Interestingly, hybrid combinations of independently-variable-inertance inerters with non-negative variable-damping dampers can be designed to produce inherently-stable control systems. Following this framework, several published works on semi-active control systems are reviewed and classified. The presented methodology is useful when developing new devices. This is demonstrated by proposing a novel control device, which is classified and assessed in terms of inherent passivity. Moreover, this passivity assessment is conveniently used to propose a control law for the device. Finally, a frame structure controlled by the device is numerically simulated through a number of scenarios including instability and a countermeasure for its mitigation.Fil: Garrido, Carlos Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: Curadelli, Raul Oscar. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ambrosini, Ricardo Daniel. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96334Garrido, Carlos Hernán; Curadelli, Raul Oscar; Ambrosini, Ricardo Daniel; On the assumed inherent stability of semi-active control systems; Elsevier; Engineering Structures; 159; 3-2018; 286-2980141-0296CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.engstruct.2018.01.009info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0141029617325737info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:40:05Zoai:ri.conicet.gov.ar:11336/96334instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:40:05.32CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the assumed inherent stability of semi-active control systems |
title |
On the assumed inherent stability of semi-active control systems |
spellingShingle |
On the assumed inherent stability of semi-active control systems Garrido, Carlos Hernán BIBO STABILITY INHERENT STABILITY PASSIVITY SEMI-ACTIVE CONTROL VARIABLE DAMPING VARIABLE INERTANCE VARIABLE STIFFNESS |
title_short |
On the assumed inherent stability of semi-active control systems |
title_full |
On the assumed inherent stability of semi-active control systems |
title_fullStr |
On the assumed inherent stability of semi-active control systems |
title_full_unstemmed |
On the assumed inherent stability of semi-active control systems |
title_sort |
On the assumed inherent stability of semi-active control systems |
dc.creator.none.fl_str_mv |
Garrido, Carlos Hernán Curadelli, Raul Oscar Ambrosini, Ricardo Daniel |
author |
Garrido, Carlos Hernán |
author_facet |
Garrido, Carlos Hernán Curadelli, Raul Oscar Ambrosini, Ricardo Daniel |
author_role |
author |
author2 |
Curadelli, Raul Oscar Ambrosini, Ricardo Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BIBO STABILITY INHERENT STABILITY PASSIVITY SEMI-ACTIVE CONTROL VARIABLE DAMPING VARIABLE INERTANCE VARIABLE STIFFNESS |
topic |
BIBO STABILITY INHERENT STABILITY PASSIVITY SEMI-ACTIVE CONTROL VARIABLE DAMPING VARIABLE INERTANCE VARIABLE STIFFNESS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.1 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Vibration control systems are usually classified into: passive, active and semi-active. Semi-active control systems are based on formerly passive mechanical devices, such as springs and dampers, whose characteristics are adjusted in real-time by active means. The attractiveness of semi-active control systems mainly relies on their assumed “inherent stability”, which makes them almost as reliable and fault-tolerant as passive control systems. The present paper shows that these assumptions are only partially true, by applying passivity formalism and bounded-input bounded-output stability definitions. Based on this study, semi-active control devices are rationally classified into three classes with two subclasses each: (1.1) non-negative variable-damping dampers, (1.2) possibly-negative variable-damping dampers, (2.1) independently-variable-stiffness springs, (2.2) resettable-stiffness springs, (3.1) independently-variable-inertance inerters, and (3.2) resettable-inertance inerters. It is found that a control system using any of the semi-active control devices of type (1.2), (2.1) or (3.1) is not inherently stable, as it is assumed in some previous papers; because those devices are “active” from the perspective of the passivity formalism. Interestingly, hybrid combinations of independently-variable-inertance inerters with non-negative variable-damping dampers can be designed to produce inherently-stable control systems. Following this framework, several published works on semi-active control systems are reviewed and classified. The presented methodology is useful when developing new devices. This is demonstrated by proposing a novel control device, which is classified and assessed in terms of inherent passivity. Moreover, this passivity assessment is conveniently used to propose a control law for the device. Finally, a frame structure controlled by the device is numerically simulated through a number of scenarios including instability and a countermeasure for its mitigation. Fil: Garrido, Carlos Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; Argentina Fil: Curadelli, Raul Oscar. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ambrosini, Ricardo Daniel. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Vibration control systems are usually classified into: passive, active and semi-active. Semi-active control systems are based on formerly passive mechanical devices, such as springs and dampers, whose characteristics are adjusted in real-time by active means. The attractiveness of semi-active control systems mainly relies on their assumed “inherent stability”, which makes them almost as reliable and fault-tolerant as passive control systems. The present paper shows that these assumptions are only partially true, by applying passivity formalism and bounded-input bounded-output stability definitions. Based on this study, semi-active control devices are rationally classified into three classes with two subclasses each: (1.1) non-negative variable-damping dampers, (1.2) possibly-negative variable-damping dampers, (2.1) independently-variable-stiffness springs, (2.2) resettable-stiffness springs, (3.1) independently-variable-inertance inerters, and (3.2) resettable-inertance inerters. It is found that a control system using any of the semi-active control devices of type (1.2), (2.1) or (3.1) is not inherently stable, as it is assumed in some previous papers; because those devices are “active” from the perspective of the passivity formalism. Interestingly, hybrid combinations of independently-variable-inertance inerters with non-negative variable-damping dampers can be designed to produce inherently-stable control systems. Following this framework, several published works on semi-active control systems are reviewed and classified. The presented methodology is useful when developing new devices. This is demonstrated by proposing a novel control device, which is classified and assessed in terms of inherent passivity. Moreover, this passivity assessment is conveniently used to propose a control law for the device. Finally, a frame structure controlled by the device is numerically simulated through a number of scenarios including instability and a countermeasure for its mitigation. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96334 Garrido, Carlos Hernán; Curadelli, Raul Oscar; Ambrosini, Ricardo Daniel; On the assumed inherent stability of semi-active control systems; Elsevier; Engineering Structures; 159; 3-2018; 286-298 0141-0296 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/96334 |
identifier_str_mv |
Garrido, Carlos Hernán; Curadelli, Raul Oscar; Ambrosini, Ricardo Daniel; On the assumed inherent stability of semi-active control systems; Elsevier; Engineering Structures; 159; 3-2018; 286-298 0141-0296 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engstruct.2018.01.009 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0141029617325737 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782069954314240 |
score |
12.982451 |