Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint

Autores
Cavagna, Andrea; Di Carlo, Luca; Giardina, Irene; Grigera, Tomas Sebastian; Pisegna, Giulia; Scandolo, Mattia
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The recent inflow of empirical data about the collective behaviour of strongly correlated biological systems has brought field theory and the renormalization group into the biophysical arena. Experiments on bird flocks and insect swarms show that social forces act on the particles’ velocity through the generator of its rotations, namely the spin, indicating that mode-coupling field theories are necessary to reproduce the correct dynamical behaviour. Unfortunately, a theory for three coupled fields—density, velocity and spin—has a prohibitive degree of intricacy. A simplifying path consists in getting rid of density fluctuations by studying incompressible systems. This requires imposing a solenoidal constraint on the primary field, an unsolved problem even for equilibrium mode-coupling theories. Here, we perform an equilibrium dynamic renormalization group analysis of a mode-coupling field theory subject to a solenoidal constraint; using the classification of Halperin and Hohenberg, we can dub this case as a solenoidal Model G. We demonstrate that the constraint produces a new vertex that mixes static and dynamical coupling constants, and that this vertex is essential to grant the closure of the renormalization group structure and the consistency of dynamics with statics. Interestingly, although the solenoidal constraint leads to a modification of the static universality class, we find that it does not change the dynamical universality class, a result that seems to represent an exception to the general rule that dynamical universality classes are narrower than static ones. Our results constitute a solid stepping stone in the admittedly large chasm towards developing an off-equilibrium mode-coupling theory of biological groups.
Fil: Cavagna, Andrea. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia
Fil: Di Carlo, Luca. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia
Fil: Giardina, Irene. Consiglio Nazionale delle Ricerche; Italia. Università degli Studi di Roma "La Sapienza"; Italia
Fil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Consiglio Nazionale delle Ricerche; Italia
Fil: Pisegna, Giulia. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia
Fil: Scandolo, Mattia. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia
Materia
COLLECTIVE BEHAVIOUR
DYNAMIC RENORMALIZATION GROUP
MODE-COUPLING
SOLENOIDAL FIELD
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/173803

id CONICETDig_f6e84302d611cbec25eab27fe75d6472
oai_identifier_str oai:ri.conicet.gov.ar:11336/173803
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal ConstraintCavagna, AndreaDi Carlo, LucaGiardina, IreneGrigera, Tomas SebastianPisegna, GiuliaScandolo, MattiaCOLLECTIVE BEHAVIOURDYNAMIC RENORMALIZATION GROUPMODE-COUPLINGSOLENOIDAL FIELDhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The recent inflow of empirical data about the collective behaviour of strongly correlated biological systems has brought field theory and the renormalization group into the biophysical arena. Experiments on bird flocks and insect swarms show that social forces act on the particles’ velocity through the generator of its rotations, namely the spin, indicating that mode-coupling field theories are necessary to reproduce the correct dynamical behaviour. Unfortunately, a theory for three coupled fields—density, velocity and spin—has a prohibitive degree of intricacy. A simplifying path consists in getting rid of density fluctuations by studying incompressible systems. This requires imposing a solenoidal constraint on the primary field, an unsolved problem even for equilibrium mode-coupling theories. Here, we perform an equilibrium dynamic renormalization group analysis of a mode-coupling field theory subject to a solenoidal constraint; using the classification of Halperin and Hohenberg, we can dub this case as a solenoidal Model G. We demonstrate that the constraint produces a new vertex that mixes static and dynamical coupling constants, and that this vertex is essential to grant the closure of the renormalization group structure and the consistency of dynamics with statics. Interestingly, although the solenoidal constraint leads to a modification of the static universality class, we find that it does not change the dynamical universality class, a result that seems to represent an exception to the general rule that dynamical universality classes are narrower than static ones. Our results constitute a solid stepping stone in the admittedly large chasm towards developing an off-equilibrium mode-coupling theory of biological groups.Fil: Cavagna, Andrea. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Di Carlo, Luca. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Giardina, Irene. Consiglio Nazionale delle Ricerche; Italia. Università degli Studi di Roma "La Sapienza"; ItaliaFil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Consiglio Nazionale delle Ricerche; ItaliaFil: Pisegna, Giulia. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Scandolo, Mattia. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; ItaliaSpringer2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/173803Cavagna, Andrea; Di Carlo, Luca; Giardina, Irene; Grigera, Tomas Sebastian; Pisegna, Giulia; et al.; Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint; Springer; Journal of Statistical Physics; 184; 3; 9-2021; 1-360022-4715CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-021-02800-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10955-021-02800-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:33Zoai:ri.conicet.gov.ar:11336/173803instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:34.022CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint
title Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint
spellingShingle Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint
Cavagna, Andrea
COLLECTIVE BEHAVIOUR
DYNAMIC RENORMALIZATION GROUP
MODE-COUPLING
SOLENOIDAL FIELD
title_short Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint
title_full Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint
title_fullStr Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint
title_full_unstemmed Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint
title_sort Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint
dc.creator.none.fl_str_mv Cavagna, Andrea
Di Carlo, Luca
Giardina, Irene
Grigera, Tomas Sebastian
Pisegna, Giulia
Scandolo, Mattia
author Cavagna, Andrea
author_facet Cavagna, Andrea
Di Carlo, Luca
Giardina, Irene
Grigera, Tomas Sebastian
Pisegna, Giulia
Scandolo, Mattia
author_role author
author2 Di Carlo, Luca
Giardina, Irene
Grigera, Tomas Sebastian
Pisegna, Giulia
Scandolo, Mattia
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv COLLECTIVE BEHAVIOUR
DYNAMIC RENORMALIZATION GROUP
MODE-COUPLING
SOLENOIDAL FIELD
topic COLLECTIVE BEHAVIOUR
DYNAMIC RENORMALIZATION GROUP
MODE-COUPLING
SOLENOIDAL FIELD
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The recent inflow of empirical data about the collective behaviour of strongly correlated biological systems has brought field theory and the renormalization group into the biophysical arena. Experiments on bird flocks and insect swarms show that social forces act on the particles’ velocity through the generator of its rotations, namely the spin, indicating that mode-coupling field theories are necessary to reproduce the correct dynamical behaviour. Unfortunately, a theory for three coupled fields—density, velocity and spin—has a prohibitive degree of intricacy. A simplifying path consists in getting rid of density fluctuations by studying incompressible systems. This requires imposing a solenoidal constraint on the primary field, an unsolved problem even for equilibrium mode-coupling theories. Here, we perform an equilibrium dynamic renormalization group analysis of a mode-coupling field theory subject to a solenoidal constraint; using the classification of Halperin and Hohenberg, we can dub this case as a solenoidal Model G. We demonstrate that the constraint produces a new vertex that mixes static and dynamical coupling constants, and that this vertex is essential to grant the closure of the renormalization group structure and the consistency of dynamics with statics. Interestingly, although the solenoidal constraint leads to a modification of the static universality class, we find that it does not change the dynamical universality class, a result that seems to represent an exception to the general rule that dynamical universality classes are narrower than static ones. Our results constitute a solid stepping stone in the admittedly large chasm towards developing an off-equilibrium mode-coupling theory of biological groups.
Fil: Cavagna, Andrea. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia
Fil: Di Carlo, Luca. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia
Fil: Giardina, Irene. Consiglio Nazionale delle Ricerche; Italia. Università degli Studi di Roma "La Sapienza"; Italia
Fil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Consiglio Nazionale delle Ricerche; Italia
Fil: Pisegna, Giulia. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia
Fil: Scandolo, Mattia. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia
description The recent inflow of empirical data about the collective behaviour of strongly correlated biological systems has brought field theory and the renormalization group into the biophysical arena. Experiments on bird flocks and insect swarms show that social forces act on the particles’ velocity through the generator of its rotations, namely the spin, indicating that mode-coupling field theories are necessary to reproduce the correct dynamical behaviour. Unfortunately, a theory for three coupled fields—density, velocity and spin—has a prohibitive degree of intricacy. A simplifying path consists in getting rid of density fluctuations by studying incompressible systems. This requires imposing a solenoidal constraint on the primary field, an unsolved problem even for equilibrium mode-coupling theories. Here, we perform an equilibrium dynamic renormalization group analysis of a mode-coupling field theory subject to a solenoidal constraint; using the classification of Halperin and Hohenberg, we can dub this case as a solenoidal Model G. We demonstrate that the constraint produces a new vertex that mixes static and dynamical coupling constants, and that this vertex is essential to grant the closure of the renormalization group structure and the consistency of dynamics with statics. Interestingly, although the solenoidal constraint leads to a modification of the static universality class, we find that it does not change the dynamical universality class, a result that seems to represent an exception to the general rule that dynamical universality classes are narrower than static ones. Our results constitute a solid stepping stone in the admittedly large chasm towards developing an off-equilibrium mode-coupling theory of biological groups.
publishDate 2021
dc.date.none.fl_str_mv 2021-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/173803
Cavagna, Andrea; Di Carlo, Luca; Giardina, Irene; Grigera, Tomas Sebastian; Pisegna, Giulia; et al.; Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint; Springer; Journal of Statistical Physics; 184; 3; 9-2021; 1-36
0022-4715
CONICET Digital
CONICET
url http://hdl.handle.net/11336/173803
identifier_str_mv Cavagna, Andrea; Di Carlo, Luca; Giardina, Irene; Grigera, Tomas Sebastian; Pisegna, Giulia; et al.; Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint; Springer; Journal of Statistical Physics; 184; 3; 9-2021; 1-36
0022-4715
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-021-02800-7
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10955-021-02800-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614254217396224
score 13.070432