Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint
- Autores
- Cavagna, Andrea; Di Carlo, Luca; Giardina, Irene; Grigera, Tomas Sebastian; Pisegna, Giulia; Scandolo, Mattia
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The recent inflow of empirical data about the collective behaviour of strongly correlated biological systems has brought field theory and the renormalization group into the biophysical arena. Experiments on bird flocks and insect swarms show that social forces act on the particles’ velocity through the generator of its rotations, namely the spin, indicating that mode-coupling field theories are necessary to reproduce the correct dynamical behaviour. Unfortunately, a theory for three coupled fields—density, velocity and spin—has a prohibitive degree of intricacy. A simplifying path consists in getting rid of density fluctuations by studying incompressible systems. This requires imposing a solenoidal constraint on the primary field, an unsolved problem even for equilibrium mode-coupling theories. Here, we perform an equilibrium dynamic renormalization group analysis of a mode-coupling field theory subject to a solenoidal constraint; using the classification of Halperin and Hohenberg, we can dub this case as a solenoidal Model G. We demonstrate that the constraint produces a new vertex that mixes static and dynamical coupling constants, and that this vertex is essential to grant the closure of the renormalization group structure and the consistency of dynamics with statics. Interestingly, although the solenoidal constraint leads to a modification of the static universality class, we find that it does not change the dynamical universality class, a result that seems to represent an exception to the general rule that dynamical universality classes are narrower than static ones. Our results constitute a solid stepping stone in the admittedly large chasm towards developing an off-equilibrium mode-coupling theory of biological groups.
Fil: Cavagna, Andrea. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia
Fil: Di Carlo, Luca. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia
Fil: Giardina, Irene. Consiglio Nazionale delle Ricerche; Italia. Università degli Studi di Roma "La Sapienza"; Italia
Fil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Consiglio Nazionale delle Ricerche; Italia
Fil: Pisegna, Giulia. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia
Fil: Scandolo, Mattia. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia - Materia
-
COLLECTIVE BEHAVIOUR
DYNAMIC RENORMALIZATION GROUP
MODE-COUPLING
SOLENOIDAL FIELD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/173803
Ver los metadatos del registro completo
id |
CONICETDig_f6e84302d611cbec25eab27fe75d6472 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/173803 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal ConstraintCavagna, AndreaDi Carlo, LucaGiardina, IreneGrigera, Tomas SebastianPisegna, GiuliaScandolo, MattiaCOLLECTIVE BEHAVIOURDYNAMIC RENORMALIZATION GROUPMODE-COUPLINGSOLENOIDAL FIELDhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The recent inflow of empirical data about the collective behaviour of strongly correlated biological systems has brought field theory and the renormalization group into the biophysical arena. Experiments on bird flocks and insect swarms show that social forces act on the particles’ velocity through the generator of its rotations, namely the spin, indicating that mode-coupling field theories are necessary to reproduce the correct dynamical behaviour. Unfortunately, a theory for three coupled fields—density, velocity and spin—has a prohibitive degree of intricacy. A simplifying path consists in getting rid of density fluctuations by studying incompressible systems. This requires imposing a solenoidal constraint on the primary field, an unsolved problem even for equilibrium mode-coupling theories. Here, we perform an equilibrium dynamic renormalization group analysis of a mode-coupling field theory subject to a solenoidal constraint; using the classification of Halperin and Hohenberg, we can dub this case as a solenoidal Model G. We demonstrate that the constraint produces a new vertex that mixes static and dynamical coupling constants, and that this vertex is essential to grant the closure of the renormalization group structure and the consistency of dynamics with statics. Interestingly, although the solenoidal constraint leads to a modification of the static universality class, we find that it does not change the dynamical universality class, a result that seems to represent an exception to the general rule that dynamical universality classes are narrower than static ones. Our results constitute a solid stepping stone in the admittedly large chasm towards developing an off-equilibrium mode-coupling theory of biological groups.Fil: Cavagna, Andrea. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Di Carlo, Luca. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Giardina, Irene. Consiglio Nazionale delle Ricerche; Italia. Università degli Studi di Roma "La Sapienza"; ItaliaFil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Consiglio Nazionale delle Ricerche; ItaliaFil: Pisegna, Giulia. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Scandolo, Mattia. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; ItaliaSpringer2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/173803Cavagna, Andrea; Di Carlo, Luca; Giardina, Irene; Grigera, Tomas Sebastian; Pisegna, Giulia; et al.; Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint; Springer; Journal of Statistical Physics; 184; 3; 9-2021; 1-360022-4715CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-021-02800-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10955-021-02800-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:33Zoai:ri.conicet.gov.ar:11336/173803instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:34.022CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint |
title |
Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint |
spellingShingle |
Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint Cavagna, Andrea COLLECTIVE BEHAVIOUR DYNAMIC RENORMALIZATION GROUP MODE-COUPLING SOLENOIDAL FIELD |
title_short |
Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint |
title_full |
Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint |
title_fullStr |
Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint |
title_full_unstemmed |
Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint |
title_sort |
Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint |
dc.creator.none.fl_str_mv |
Cavagna, Andrea Di Carlo, Luca Giardina, Irene Grigera, Tomas Sebastian Pisegna, Giulia Scandolo, Mattia |
author |
Cavagna, Andrea |
author_facet |
Cavagna, Andrea Di Carlo, Luca Giardina, Irene Grigera, Tomas Sebastian Pisegna, Giulia Scandolo, Mattia |
author_role |
author |
author2 |
Di Carlo, Luca Giardina, Irene Grigera, Tomas Sebastian Pisegna, Giulia Scandolo, Mattia |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
COLLECTIVE BEHAVIOUR DYNAMIC RENORMALIZATION GROUP MODE-COUPLING SOLENOIDAL FIELD |
topic |
COLLECTIVE BEHAVIOUR DYNAMIC RENORMALIZATION GROUP MODE-COUPLING SOLENOIDAL FIELD |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The recent inflow of empirical data about the collective behaviour of strongly correlated biological systems has brought field theory and the renormalization group into the biophysical arena. Experiments on bird flocks and insect swarms show that social forces act on the particles’ velocity through the generator of its rotations, namely the spin, indicating that mode-coupling field theories are necessary to reproduce the correct dynamical behaviour. Unfortunately, a theory for three coupled fields—density, velocity and spin—has a prohibitive degree of intricacy. A simplifying path consists in getting rid of density fluctuations by studying incompressible systems. This requires imposing a solenoidal constraint on the primary field, an unsolved problem even for equilibrium mode-coupling theories. Here, we perform an equilibrium dynamic renormalization group analysis of a mode-coupling field theory subject to a solenoidal constraint; using the classification of Halperin and Hohenberg, we can dub this case as a solenoidal Model G. We demonstrate that the constraint produces a new vertex that mixes static and dynamical coupling constants, and that this vertex is essential to grant the closure of the renormalization group structure and the consistency of dynamics with statics. Interestingly, although the solenoidal constraint leads to a modification of the static universality class, we find that it does not change the dynamical universality class, a result that seems to represent an exception to the general rule that dynamical universality classes are narrower than static ones. Our results constitute a solid stepping stone in the admittedly large chasm towards developing an off-equilibrium mode-coupling theory of biological groups. Fil: Cavagna, Andrea. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia Fil: Di Carlo, Luca. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia Fil: Giardina, Irene. Consiglio Nazionale delle Ricerche; Italia. Università degli Studi di Roma "La Sapienza"; Italia Fil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Consiglio Nazionale delle Ricerche; Italia Fil: Pisegna, Giulia. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia Fil: Scandolo, Mattia. Università degli Studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia |
description |
The recent inflow of empirical data about the collective behaviour of strongly correlated biological systems has brought field theory and the renormalization group into the biophysical arena. Experiments on bird flocks and insect swarms show that social forces act on the particles’ velocity through the generator of its rotations, namely the spin, indicating that mode-coupling field theories are necessary to reproduce the correct dynamical behaviour. Unfortunately, a theory for three coupled fields—density, velocity and spin—has a prohibitive degree of intricacy. A simplifying path consists in getting rid of density fluctuations by studying incompressible systems. This requires imposing a solenoidal constraint on the primary field, an unsolved problem even for equilibrium mode-coupling theories. Here, we perform an equilibrium dynamic renormalization group analysis of a mode-coupling field theory subject to a solenoidal constraint; using the classification of Halperin and Hohenberg, we can dub this case as a solenoidal Model G. We demonstrate that the constraint produces a new vertex that mixes static and dynamical coupling constants, and that this vertex is essential to grant the closure of the renormalization group structure and the consistency of dynamics with statics. Interestingly, although the solenoidal constraint leads to a modification of the static universality class, we find that it does not change the dynamical universality class, a result that seems to represent an exception to the general rule that dynamical universality classes are narrower than static ones. Our results constitute a solid stepping stone in the admittedly large chasm towards developing an off-equilibrium mode-coupling theory of biological groups. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/173803 Cavagna, Andrea; Di Carlo, Luca; Giardina, Irene; Grigera, Tomas Sebastian; Pisegna, Giulia; et al.; Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint; Springer; Journal of Statistical Physics; 184; 3; 9-2021; 1-36 0022-4715 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/173803 |
identifier_str_mv |
Cavagna, Andrea; Di Carlo, Luca; Giardina, Irene; Grigera, Tomas Sebastian; Pisegna, Giulia; et al.; Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint; Springer; Journal of Statistical Physics; 184; 3; 9-2021; 1-36 0022-4715 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-021-02800-7 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10955-021-02800-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614254217396224 |
score |
13.070432 |