Generalized Local Charge Conservation in Many-Body Quantum Mechanics

Autores
Minotti, Fernando Oscar; Modanese, G.
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the framework of the quantum theory of many-particle systems, we study the compatibility of approximated non-equilibrium Green’s functions (NEGFs) and of approximated solutions of the Dyson equation with a modified continuity equation of the form ∂ t ⟨ ρ ⟩ + ( 1 − γ ) ∇ · ⟨ J ⟩ = 0 . A continuity equation of this kind allows the e.m. coupling of the system in the extended Aharonov–Bohm electrodynamics, but not in Maxwell electrodynamics. Focusing on the case of molecular junctions simulated numerically with the Density Functional Theory (DFT), we further discuss the re-definition of local current density proposed by Wang et al., which also turns out to be compatible with the extended Aharonov–Bohm electrodynamics.
Fil: Minotti, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Modanese, G.. Free University of Bozen-Bolzano; Italia
Materia
EXTENDED AHARONOV-BOHM ELECTRODYNAMICS
NON-EQUILIBRIUM GREEN'S FUNCTIONS
DYSON EQUATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/274435

id CONICETDig_f65c1d0f2a94b3a45427cc34bfa58a10
oai_identifier_str oai:ri.conicet.gov.ar:11336/274435
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Generalized Local Charge Conservation in Many-Body Quantum MechanicsMinotti, Fernando OscarModanese, G.EXTENDED AHARONOV-BOHM ELECTRODYNAMICSNON-EQUILIBRIUM GREEN'S FUNCTIONSDYSON EQUATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the framework of the quantum theory of many-particle systems, we study the compatibility of approximated non-equilibrium Green’s functions (NEGFs) and of approximated solutions of the Dyson equation with a modified continuity equation of the form ∂ t ⟨ ρ ⟩ + ( 1 − γ ) ∇ · ⟨ J ⟩ = 0 . A continuity equation of this kind allows the e.m. coupling of the system in the extended Aharonov–Bohm electrodynamics, but not in Maxwell electrodynamics. Focusing on the case of molecular junctions simulated numerically with the Density Functional Theory (DFT), we further discuss the re-definition of local current density proposed by Wang et al., which also turns out to be compatible with the extended Aharonov–Bohm electrodynamics.Fil: Minotti, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Modanese, G.. Free University of Bozen-Bolzano; ItaliaMDPI2025-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274435Minotti, Fernando Oscar; Modanese, G.; Generalized Local Charge Conservation in Many-Body Quantum Mechanics; MDPI; Mathematics; 13; 5; 3-2025; 1-112227-7390CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/13/5/892info:eu-repo/semantics/altIdentifier/doi/10.3390/math13050892info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T08:39:50Zoai:ri.conicet.gov.ar:11336/274435instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 08:39:50.502CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Generalized Local Charge Conservation in Many-Body Quantum Mechanics
title Generalized Local Charge Conservation in Many-Body Quantum Mechanics
spellingShingle Generalized Local Charge Conservation in Many-Body Quantum Mechanics
Minotti, Fernando Oscar
EXTENDED AHARONOV-BOHM ELECTRODYNAMICS
NON-EQUILIBRIUM GREEN'S FUNCTIONS
DYSON EQUATION
title_short Generalized Local Charge Conservation in Many-Body Quantum Mechanics
title_full Generalized Local Charge Conservation in Many-Body Quantum Mechanics
title_fullStr Generalized Local Charge Conservation in Many-Body Quantum Mechanics
title_full_unstemmed Generalized Local Charge Conservation in Many-Body Quantum Mechanics
title_sort Generalized Local Charge Conservation in Many-Body Quantum Mechanics
dc.creator.none.fl_str_mv Minotti, Fernando Oscar
Modanese, G.
author Minotti, Fernando Oscar
author_facet Minotti, Fernando Oscar
Modanese, G.
author_role author
author2 Modanese, G.
author2_role author
dc.subject.none.fl_str_mv EXTENDED AHARONOV-BOHM ELECTRODYNAMICS
NON-EQUILIBRIUM GREEN'S FUNCTIONS
DYSON EQUATION
topic EXTENDED AHARONOV-BOHM ELECTRODYNAMICS
NON-EQUILIBRIUM GREEN'S FUNCTIONS
DYSON EQUATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the framework of the quantum theory of many-particle systems, we study the compatibility of approximated non-equilibrium Green’s functions (NEGFs) and of approximated solutions of the Dyson equation with a modified continuity equation of the form ∂ t ⟨ ρ ⟩ + ( 1 − γ ) ∇ · ⟨ J ⟩ = 0 . A continuity equation of this kind allows the e.m. coupling of the system in the extended Aharonov–Bohm electrodynamics, but not in Maxwell electrodynamics. Focusing on the case of molecular junctions simulated numerically with the Density Functional Theory (DFT), we further discuss the re-definition of local current density proposed by Wang et al., which also turns out to be compatible with the extended Aharonov–Bohm electrodynamics.
Fil: Minotti, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Modanese, G.. Free University of Bozen-Bolzano; Italia
description In the framework of the quantum theory of many-particle systems, we study the compatibility of approximated non-equilibrium Green’s functions (NEGFs) and of approximated solutions of the Dyson equation with a modified continuity equation of the form ∂ t ⟨ ρ ⟩ + ( 1 − γ ) ∇ · ⟨ J ⟩ = 0 . A continuity equation of this kind allows the e.m. coupling of the system in the extended Aharonov–Bohm electrodynamics, but not in Maxwell electrodynamics. Focusing on the case of molecular junctions simulated numerically with the Density Functional Theory (DFT), we further discuss the re-definition of local current density proposed by Wang et al., which also turns out to be compatible with the extended Aharonov–Bohm electrodynamics.
publishDate 2025
dc.date.none.fl_str_mv 2025-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/274435
Minotti, Fernando Oscar; Modanese, G.; Generalized Local Charge Conservation in Many-Body Quantum Mechanics; MDPI; Mathematics; 13; 5; 3-2025; 1-11
2227-7390
CONICET Digital
CONICET
url http://hdl.handle.net/11336/274435
identifier_str_mv Minotti, Fernando Oscar; Modanese, G.; Generalized Local Charge Conservation in Many-Body Quantum Mechanics; MDPI; Mathematics; 13; 5; 3-2025; 1-11
2227-7390
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/13/5/892
info:eu-repo/semantics/altIdentifier/doi/10.3390/math13050892
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1849872367161966592
score 13.011256