Quantum Uncertainty and Energy Flux in Extended Electrodynamics
- Autores
- Minotti, Fernando Oscar; Modanese, Giovanni
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In quantum theory, for a system with macroscopic wavefunction, the charge density and current density are represented by non-commuting operators. It follows that the anomaly I = ∂t ρ + ∇ · j, being essentially a linear combination of these two operators in the frequency-momentum domain, does not admit eigenstates and has a minimum uncertainty fixed by the Heisenberg relation ∆N∆φ ≃ 1, which involves the occupation number and the phase of the wavefunction. We give an estimate of the minimum uncertainty in the case of a tunnel Josephson junction made of Nb. Due to this violation of the local conservation of charge, for the evaluation of the e.m. field generated by the system it is necessary to use the extended Aharonov–Bohm electrodynamics. After recalling its field equations, we compute in general form the energy–momentum tensor and the radiation power flux generated by a localized oscillating source. The physical requirements that the total flux be positive, negative or zero yield some conditions on the dipole moment of the anomaly I.
Fil: Minotti, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Modanese, Giovanni. University of Bozen-Bolzano; Italia - Materia
-
ENERGY–MOMENTUM TENSOR
EXTENDED AHARONOV–BOHM ELECTRODYNAMICS
LOCAL CONSERVATION LAWS
TUNNEL JOSEPHSON JUNCTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/177184
Ver los metadatos del registro completo
id |
CONICETDig_7a589bd17991ffd175f42d381af4a9a5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/177184 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantum Uncertainty and Energy Flux in Extended ElectrodynamicsMinotti, Fernando OscarModanese, GiovanniENERGY–MOMENTUM TENSOREXTENDED AHARONOV–BOHM ELECTRODYNAMICSLOCAL CONSERVATION LAWSTUNNEL JOSEPHSON JUNCTIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In quantum theory, for a system with macroscopic wavefunction, the charge density and current density are represented by non-commuting operators. It follows that the anomaly I = ∂t ρ + ∇ · j, being essentially a linear combination of these two operators in the frequency-momentum domain, does not admit eigenstates and has a minimum uncertainty fixed by the Heisenberg relation ∆N∆φ ≃ 1, which involves the occupation number and the phase of the wavefunction. We give an estimate of the minimum uncertainty in the case of a tunnel Josephson junction made of Nb. Due to this violation of the local conservation of charge, for the evaluation of the e.m. field generated by the system it is necessary to use the extended Aharonov–Bohm electrodynamics. After recalling its field equations, we compute in general form the energy–momentum tensor and the radiation power flux generated by a localized oscillating source. The physical requirements that the total flux be positive, negative or zero yield some conditions on the dipole moment of the anomaly I.Fil: Minotti, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Modanese, Giovanni. University of Bozen-Bolzano; ItaliaMDPI2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/177184Minotti, Fernando Oscar; Modanese, Giovanni; Quantum Uncertainty and Energy Flux in Extended Electrodynamics; MDPI; Quantum Reports; 3; 4; 10-2021; 703-7262624-960XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2624-960X/3/4/44info:eu-repo/semantics/altIdentifier/doi/10.3390/quantum3040044info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:11Zoai:ri.conicet.gov.ar:11336/177184instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:11.71CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantum Uncertainty and Energy Flux in Extended Electrodynamics |
title |
Quantum Uncertainty and Energy Flux in Extended Electrodynamics |
spellingShingle |
Quantum Uncertainty and Energy Flux in Extended Electrodynamics Minotti, Fernando Oscar ENERGY–MOMENTUM TENSOR EXTENDED AHARONOV–BOHM ELECTRODYNAMICS LOCAL CONSERVATION LAWS TUNNEL JOSEPHSON JUNCTIONS |
title_short |
Quantum Uncertainty and Energy Flux in Extended Electrodynamics |
title_full |
Quantum Uncertainty and Energy Flux in Extended Electrodynamics |
title_fullStr |
Quantum Uncertainty and Energy Flux in Extended Electrodynamics |
title_full_unstemmed |
Quantum Uncertainty and Energy Flux in Extended Electrodynamics |
title_sort |
Quantum Uncertainty and Energy Flux in Extended Electrodynamics |
dc.creator.none.fl_str_mv |
Minotti, Fernando Oscar Modanese, Giovanni |
author |
Minotti, Fernando Oscar |
author_facet |
Minotti, Fernando Oscar Modanese, Giovanni |
author_role |
author |
author2 |
Modanese, Giovanni |
author2_role |
author |
dc.subject.none.fl_str_mv |
ENERGY–MOMENTUM TENSOR EXTENDED AHARONOV–BOHM ELECTRODYNAMICS LOCAL CONSERVATION LAWS TUNNEL JOSEPHSON JUNCTIONS |
topic |
ENERGY–MOMENTUM TENSOR EXTENDED AHARONOV–BOHM ELECTRODYNAMICS LOCAL CONSERVATION LAWS TUNNEL JOSEPHSON JUNCTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In quantum theory, for a system with macroscopic wavefunction, the charge density and current density are represented by non-commuting operators. It follows that the anomaly I = ∂t ρ + ∇ · j, being essentially a linear combination of these two operators in the frequency-momentum domain, does not admit eigenstates and has a minimum uncertainty fixed by the Heisenberg relation ∆N∆φ ≃ 1, which involves the occupation number and the phase of the wavefunction. We give an estimate of the minimum uncertainty in the case of a tunnel Josephson junction made of Nb. Due to this violation of the local conservation of charge, for the evaluation of the e.m. field generated by the system it is necessary to use the extended Aharonov–Bohm electrodynamics. After recalling its field equations, we compute in general form the energy–momentum tensor and the radiation power flux generated by a localized oscillating source. The physical requirements that the total flux be positive, negative or zero yield some conditions on the dipole moment of the anomaly I. Fil: Minotti, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina Fil: Modanese, Giovanni. University of Bozen-Bolzano; Italia |
description |
In quantum theory, for a system with macroscopic wavefunction, the charge density and current density are represented by non-commuting operators. It follows that the anomaly I = ∂t ρ + ∇ · j, being essentially a linear combination of these two operators in the frequency-momentum domain, does not admit eigenstates and has a minimum uncertainty fixed by the Heisenberg relation ∆N∆φ ≃ 1, which involves the occupation number and the phase of the wavefunction. We give an estimate of the minimum uncertainty in the case of a tunnel Josephson junction made of Nb. Due to this violation of the local conservation of charge, for the evaluation of the e.m. field generated by the system it is necessary to use the extended Aharonov–Bohm electrodynamics. After recalling its field equations, we compute in general form the energy–momentum tensor and the radiation power flux generated by a localized oscillating source. The physical requirements that the total flux be positive, negative or zero yield some conditions on the dipole moment of the anomaly I. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/177184 Minotti, Fernando Oscar; Modanese, Giovanni; Quantum Uncertainty and Energy Flux in Extended Electrodynamics; MDPI; Quantum Reports; 3; 4; 10-2021; 703-726 2624-960X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/177184 |
identifier_str_mv |
Minotti, Fernando Oscar; Modanese, Giovanni; Quantum Uncertainty and Energy Flux in Extended Electrodynamics; MDPI; Quantum Reports; 3; 4; 10-2021; 703-726 2624-960X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2624-960X/3/4/44 info:eu-repo/semantics/altIdentifier/doi/10.3390/quantum3040044 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613056753041408 |
score |
13.070432 |