Quantum Uncertainty and Energy Flux in Extended Electrodynamics

Autores
Minotti, Fernando Oscar; Modanese, Giovanni
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In quantum theory, for a system with macroscopic wavefunction, the charge density and current density are represented by non-commuting operators. It follows that the anomaly I = ∂t ρ + ∇ · j, being essentially a linear combination of these two operators in the frequency-momentum domain, does not admit eigenstates and has a minimum uncertainty fixed by the Heisenberg relation ∆N∆φ ≃ 1, which involves the occupation number and the phase of the wavefunction. We give an estimate of the minimum uncertainty in the case of a tunnel Josephson junction made of Nb. Due to this violation of the local conservation of charge, for the evaluation of the e.m. field generated by the system it is necessary to use the extended Aharonov–Bohm electrodynamics. After recalling its field equations, we compute in general form the energy–momentum tensor and the radiation power flux generated by a localized oscillating source. The physical requirements that the total flux be positive, negative or zero yield some conditions on the dipole moment of the anomaly I.
Fil: Minotti, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Modanese, Giovanni. University of Bozen-Bolzano; Italia
Materia
ENERGY–MOMENTUM TENSOR
EXTENDED AHARONOV–BOHM ELECTRODYNAMICS
LOCAL CONSERVATION LAWS
TUNNEL JOSEPHSON JUNCTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/177184

id CONICETDig_7a589bd17991ffd175f42d381af4a9a5
oai_identifier_str oai:ri.conicet.gov.ar:11336/177184
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantum Uncertainty and Energy Flux in Extended ElectrodynamicsMinotti, Fernando OscarModanese, GiovanniENERGY–MOMENTUM TENSOREXTENDED AHARONOV–BOHM ELECTRODYNAMICSLOCAL CONSERVATION LAWSTUNNEL JOSEPHSON JUNCTIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In quantum theory, for a system with macroscopic wavefunction, the charge density and current density are represented by non-commuting operators. It follows that the anomaly I = ∂t ρ + ∇ · j, being essentially a linear combination of these two operators in the frequency-momentum domain, does not admit eigenstates and has a minimum uncertainty fixed by the Heisenberg relation ∆N∆φ ≃ 1, which involves the occupation number and the phase of the wavefunction. We give an estimate of the minimum uncertainty in the case of a tunnel Josephson junction made of Nb. Due to this violation of the local conservation of charge, for the evaluation of the e.m. field generated by the system it is necessary to use the extended Aharonov–Bohm electrodynamics. After recalling its field equations, we compute in general form the energy–momentum tensor and the radiation power flux generated by a localized oscillating source. The physical requirements that the total flux be positive, negative or zero yield some conditions on the dipole moment of the anomaly I.Fil: Minotti, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Modanese, Giovanni. University of Bozen-Bolzano; ItaliaMDPI2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/177184Minotti, Fernando Oscar; Modanese, Giovanni; Quantum Uncertainty and Energy Flux in Extended Electrodynamics; MDPI; Quantum Reports; 3; 4; 10-2021; 703-7262624-960XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2624-960X/3/4/44info:eu-repo/semantics/altIdentifier/doi/10.3390/quantum3040044info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:11Zoai:ri.conicet.gov.ar:11336/177184instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:11.71CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantum Uncertainty and Energy Flux in Extended Electrodynamics
title Quantum Uncertainty and Energy Flux in Extended Electrodynamics
spellingShingle Quantum Uncertainty and Energy Flux in Extended Electrodynamics
Minotti, Fernando Oscar
ENERGY–MOMENTUM TENSOR
EXTENDED AHARONOV–BOHM ELECTRODYNAMICS
LOCAL CONSERVATION LAWS
TUNNEL JOSEPHSON JUNCTIONS
title_short Quantum Uncertainty and Energy Flux in Extended Electrodynamics
title_full Quantum Uncertainty and Energy Flux in Extended Electrodynamics
title_fullStr Quantum Uncertainty and Energy Flux in Extended Electrodynamics
title_full_unstemmed Quantum Uncertainty and Energy Flux in Extended Electrodynamics
title_sort Quantum Uncertainty and Energy Flux in Extended Electrodynamics
dc.creator.none.fl_str_mv Minotti, Fernando Oscar
Modanese, Giovanni
author Minotti, Fernando Oscar
author_facet Minotti, Fernando Oscar
Modanese, Giovanni
author_role author
author2 Modanese, Giovanni
author2_role author
dc.subject.none.fl_str_mv ENERGY–MOMENTUM TENSOR
EXTENDED AHARONOV–BOHM ELECTRODYNAMICS
LOCAL CONSERVATION LAWS
TUNNEL JOSEPHSON JUNCTIONS
topic ENERGY–MOMENTUM TENSOR
EXTENDED AHARONOV–BOHM ELECTRODYNAMICS
LOCAL CONSERVATION LAWS
TUNNEL JOSEPHSON JUNCTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In quantum theory, for a system with macroscopic wavefunction, the charge density and current density are represented by non-commuting operators. It follows that the anomaly I = ∂t ρ + ∇ · j, being essentially a linear combination of these two operators in the frequency-momentum domain, does not admit eigenstates and has a minimum uncertainty fixed by the Heisenberg relation ∆N∆φ ≃ 1, which involves the occupation number and the phase of the wavefunction. We give an estimate of the minimum uncertainty in the case of a tunnel Josephson junction made of Nb. Due to this violation of the local conservation of charge, for the evaluation of the e.m. field generated by the system it is necessary to use the extended Aharonov–Bohm electrodynamics. After recalling its field equations, we compute in general form the energy–momentum tensor and the radiation power flux generated by a localized oscillating source. The physical requirements that the total flux be positive, negative or zero yield some conditions on the dipole moment of the anomaly I.
Fil: Minotti, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Modanese, Giovanni. University of Bozen-Bolzano; Italia
description In quantum theory, for a system with macroscopic wavefunction, the charge density and current density are represented by non-commuting operators. It follows that the anomaly I = ∂t ρ + ∇ · j, being essentially a linear combination of these two operators in the frequency-momentum domain, does not admit eigenstates and has a minimum uncertainty fixed by the Heisenberg relation ∆N∆φ ≃ 1, which involves the occupation number and the phase of the wavefunction. We give an estimate of the minimum uncertainty in the case of a tunnel Josephson junction made of Nb. Due to this violation of the local conservation of charge, for the evaluation of the e.m. field generated by the system it is necessary to use the extended Aharonov–Bohm electrodynamics. After recalling its field equations, we compute in general form the energy–momentum tensor and the radiation power flux generated by a localized oscillating source. The physical requirements that the total flux be positive, negative or zero yield some conditions on the dipole moment of the anomaly I.
publishDate 2021
dc.date.none.fl_str_mv 2021-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/177184
Minotti, Fernando Oscar; Modanese, Giovanni; Quantum Uncertainty and Energy Flux in Extended Electrodynamics; MDPI; Quantum Reports; 3; 4; 10-2021; 703-726
2624-960X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/177184
identifier_str_mv Minotti, Fernando Oscar; Modanese, Giovanni; Quantum Uncertainty and Energy Flux in Extended Electrodynamics; MDPI; Quantum Reports; 3; 4; 10-2021; 703-726
2624-960X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2624-960X/3/4/44
info:eu-repo/semantics/altIdentifier/doi/10.3390/quantum3040044
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613056753041408
score 13.070432