Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection
- Autores
- Martos, Gabriel Alejandro; Hernández, Nicolás; Muñoz, Alberto; Moguerza, Javier
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We propose a definition of entropy for stochastic processes. We provide a reproducing kernel Hilbert space model to estimate entropy from a random sample of realizations of a stochastic process, namely functional data, and introduce two approaches to estimate minimum entropy sets. These sets are relevant to detect anomalous or outlier functional data. A numerical experiment illustrates the performance of the proposed method; in addition, we conduct an analysis of mortality rate curves as an interesting application in a real-data context to explore functional anomaly detection.
Fil: Martos, Gabriel Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hernández, Nicolás. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Muñoz, Alberto. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Moguerza, Javier. Universidad Rey Juan Carlos; España - Materia
-
ANOMALY DETECTION
ENTROPY
FUNCTIONAL DATA
MINIMUM-ENTROPY SETS
STOCHASTIC PROCESS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/92560
Ver los metadatos del registro completo
id |
CONICETDig_f655783630e59c02aacbc4754179f67d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/92560 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Entropy Measures for Stochastic Processes with Applications in Functional Anomaly DetectionMartos, Gabriel AlejandroHernández, NicolásMuñoz, AlbertoMoguerza, JavierANOMALY DETECTIONENTROPYFUNCTIONAL DATAMINIMUM-ENTROPY SETSSTOCHASTIC PROCESShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We propose a definition of entropy for stochastic processes. We provide a reproducing kernel Hilbert space model to estimate entropy from a random sample of realizations of a stochastic process, namely functional data, and introduce two approaches to estimate minimum entropy sets. These sets are relevant to detect anomalous or outlier functional data. A numerical experiment illustrates the performance of the proposed method; in addition, we conduct an analysis of mortality rate curves as an interesting application in a real-data context to explore functional anomaly detection.Fil: Martos, Gabriel Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hernández, Nicolás. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Muñoz, Alberto. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Moguerza, Javier. Universidad Rey Juan Carlos; EspañaMolecular Diversity Preservation International2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92560Martos, Gabriel Alejandro; Hernández, Nicolás; Muñoz, Alberto; Moguerza, Javier; Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection; Molecular Diversity Preservation International; Entropy; 20; 1; 1-20181099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/1099-4300/20/1/33info:eu-repo/semantics/altIdentifier/doi/10.3390/e20010033info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:07Zoai:ri.conicet.gov.ar:11336/92560instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:08.245CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection |
title |
Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection |
spellingShingle |
Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection Martos, Gabriel Alejandro ANOMALY DETECTION ENTROPY FUNCTIONAL DATA MINIMUM-ENTROPY SETS STOCHASTIC PROCESS |
title_short |
Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection |
title_full |
Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection |
title_fullStr |
Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection |
title_full_unstemmed |
Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection |
title_sort |
Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection |
dc.creator.none.fl_str_mv |
Martos, Gabriel Alejandro Hernández, Nicolás Muñoz, Alberto Moguerza, Javier |
author |
Martos, Gabriel Alejandro |
author_facet |
Martos, Gabriel Alejandro Hernández, Nicolás Muñoz, Alberto Moguerza, Javier |
author_role |
author |
author2 |
Hernández, Nicolás Muñoz, Alberto Moguerza, Javier |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ANOMALY DETECTION ENTROPY FUNCTIONAL DATA MINIMUM-ENTROPY SETS STOCHASTIC PROCESS |
topic |
ANOMALY DETECTION ENTROPY FUNCTIONAL DATA MINIMUM-ENTROPY SETS STOCHASTIC PROCESS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We propose a definition of entropy for stochastic processes. We provide a reproducing kernel Hilbert space model to estimate entropy from a random sample of realizations of a stochastic process, namely functional data, and introduce two approaches to estimate minimum entropy sets. These sets are relevant to detect anomalous or outlier functional data. A numerical experiment illustrates the performance of the proposed method; in addition, we conduct an analysis of mortality rate curves as an interesting application in a real-data context to explore functional anomaly detection. Fil: Martos, Gabriel Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Hernández, Nicolás. Universidad Carlos III de Madrid. Instituto de Salud; España Fil: Muñoz, Alberto. Universidad Carlos III de Madrid. Instituto de Salud; España Fil: Moguerza, Javier. Universidad Rey Juan Carlos; España |
description |
We propose a definition of entropy for stochastic processes. We provide a reproducing kernel Hilbert space model to estimate entropy from a random sample of realizations of a stochastic process, namely functional data, and introduce two approaches to estimate minimum entropy sets. These sets are relevant to detect anomalous or outlier functional data. A numerical experiment illustrates the performance of the proposed method; in addition, we conduct an analysis of mortality rate curves as an interesting application in a real-data context to explore functional anomaly detection. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/92560 Martos, Gabriel Alejandro; Hernández, Nicolás; Muñoz, Alberto; Moguerza, Javier; Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection; Molecular Diversity Preservation International; Entropy; 20; 1; 1-2018 1099-4300 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/92560 |
identifier_str_mv |
Martos, Gabriel Alejandro; Hernández, Nicolás; Muñoz, Alberto; Moguerza, Javier; Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection; Molecular Diversity Preservation International; Entropy; 20; 1; 1-2018 1099-4300 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/1099-4300/20/1/33 info:eu-repo/semantics/altIdentifier/doi/10.3390/e20010033 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613600182796288 |
score |
13.070432 |