An optimization model for operations of large scale hydro power plants
- Autores
- Alvarez, Gonzalo Exequiel
- Año de publicación
- 2020
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Globally, there is an increase in the proportion of renewable sources for electricity generation. Among renewable sources, hydropower is the most widespread. For this reason, the improvements of their applications have been the focus of researches. Hydroelectric power plants have numerous aspects which might represent several economic advantages, if they are operated efficiently. Mathematical optimization models are interesting tools that help in the decision-making processes. In this context, this paper introduces a new Mixed Integer Lineal Programming model that determines the most convenient combination of units to operate a large-scale hydro power plant. Several aspects of reality are taken into account, which are sometimes not considered, such as the variation of the hydraulic head and the performance of other elements besides the turbines, as floodgates. To prove the effectiveness of the new model, the Itaipú Power Plant is selected as a case study. It has an installed power capacity of 14,000 MW and holds the world record in terms of annual generation with 103 million MWh. Three possible scenarios are evaluated in order to analyze the behavior of this plant in normal and extreme situations. The results indicate that the model effectively reduces computational times, and that power generation is influenced by market price variations and reservoir limitations.
Fil: Alvarez, Gonzalo Exequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Mixed Integer Linear Programming
Itaipú
Hydraulic Head
Operating Curves - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/129945
Ver los metadatos del registro completo
id |
CONICETDig_f5c86373c0bdb884c7fde2d6267f8dc0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/129945 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An optimization model for operations of large scale hydro power plantsAlvarez, Gonzalo ExequielMixed Integer Linear ProgrammingItaipúHydraulic HeadOperating Curveshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Globally, there is an increase in the proportion of renewable sources for electricity generation. Among renewable sources, hydropower is the most widespread. For this reason, the improvements of their applications have been the focus of researches. Hydroelectric power plants have numerous aspects which might represent several economic advantages, if they are operated efficiently. Mathematical optimization models are interesting tools that help in the decision-making processes. In this context, this paper introduces a new Mixed Integer Lineal Programming model that determines the most convenient combination of units to operate a large-scale hydro power plant. Several aspects of reality are taken into account, which are sometimes not considered, such as the variation of the hydraulic head and the performance of other elements besides the turbines, as floodgates. To prove the effectiveness of the new model, the Itaipú Power Plant is selected as a case study. It has an installed power capacity of 14,000 MW and holds the world record in terms of annual generation with 103 million MWh. Three possible scenarios are evaluated in order to analyze the behavior of this plant in normal and extreme situations. The results indicate that the model effectively reduces computational times, and that power generation is influenced by market price variations and reservoir limitations.Fil: Alvarez, Gonzalo Exequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaInstitute of Electrical and Electronics Engineers2020-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129945Alvarez, Gonzalo Exequiel; An optimization model for operations of large scale hydro power plants; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 18; 9; 9-2020; 1631-16381548-0992CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/3016info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:22Zoai:ri.conicet.gov.ar:11336/129945instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:22.318CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An optimization model for operations of large scale hydro power plants |
title |
An optimization model for operations of large scale hydro power plants |
spellingShingle |
An optimization model for operations of large scale hydro power plants Alvarez, Gonzalo Exequiel Mixed Integer Linear Programming Itaipú Hydraulic Head Operating Curves |
title_short |
An optimization model for operations of large scale hydro power plants |
title_full |
An optimization model for operations of large scale hydro power plants |
title_fullStr |
An optimization model for operations of large scale hydro power plants |
title_full_unstemmed |
An optimization model for operations of large scale hydro power plants |
title_sort |
An optimization model for operations of large scale hydro power plants |
dc.creator.none.fl_str_mv |
Alvarez, Gonzalo Exequiel |
author |
Alvarez, Gonzalo Exequiel |
author_facet |
Alvarez, Gonzalo Exequiel |
author_role |
author |
dc.subject.none.fl_str_mv |
Mixed Integer Linear Programming Itaipú Hydraulic Head Operating Curves |
topic |
Mixed Integer Linear Programming Itaipú Hydraulic Head Operating Curves |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Globally, there is an increase in the proportion of renewable sources for electricity generation. Among renewable sources, hydropower is the most widespread. For this reason, the improvements of their applications have been the focus of researches. Hydroelectric power plants have numerous aspects which might represent several economic advantages, if they are operated efficiently. Mathematical optimization models are interesting tools that help in the decision-making processes. In this context, this paper introduces a new Mixed Integer Lineal Programming model that determines the most convenient combination of units to operate a large-scale hydro power plant. Several aspects of reality are taken into account, which are sometimes not considered, such as the variation of the hydraulic head and the performance of other elements besides the turbines, as floodgates. To prove the effectiveness of the new model, the Itaipú Power Plant is selected as a case study. It has an installed power capacity of 14,000 MW and holds the world record in terms of annual generation with 103 million MWh. Three possible scenarios are evaluated in order to analyze the behavior of this plant in normal and extreme situations. The results indicate that the model effectively reduces computational times, and that power generation is influenced by market price variations and reservoir limitations. Fil: Alvarez, Gonzalo Exequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
Globally, there is an increase in the proportion of renewable sources for electricity generation. Among renewable sources, hydropower is the most widespread. For this reason, the improvements of their applications have been the focus of researches. Hydroelectric power plants have numerous aspects which might represent several economic advantages, if they are operated efficiently. Mathematical optimization models are interesting tools that help in the decision-making processes. In this context, this paper introduces a new Mixed Integer Lineal Programming model that determines the most convenient combination of units to operate a large-scale hydro power plant. Several aspects of reality are taken into account, which are sometimes not considered, such as the variation of the hydraulic head and the performance of other elements besides the turbines, as floodgates. To prove the effectiveness of the new model, the Itaipú Power Plant is selected as a case study. It has an installed power capacity of 14,000 MW and holds the world record in terms of annual generation with 103 million MWh. Three possible scenarios are evaluated in order to analyze the behavior of this plant in normal and extreme situations. The results indicate that the model effectively reduces computational times, and that power generation is influenced by market price variations and reservoir limitations. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/129945 Alvarez, Gonzalo Exequiel; An optimization model for operations of large scale hydro power plants; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 18; 9; 9-2020; 1631-1638 1548-0992 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/129945 |
identifier_str_mv |
Alvarez, Gonzalo Exequiel; An optimization model for operations of large scale hydro power plants; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 18; 9; 9-2020; 1631-1638 1548-0992 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/3016 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613211896152064 |
score |
13.070432 |