CFD Simulations of coal gasification in a fluidized bed

Autores
Reyes Urrutia, Ramón Andrés; Soria, Jose Miguel; Mora Basaure, Claudia; Zambon, Mariana Teresa; Mazza, German Delfor
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the world there is a trend towards new forms of energy, generated mainly by the progressively increment in demand for non-renewable resources, which are becoming more expensive and scarce. This has motivated countries and companies to seek new alternatives and technologies related to the exploitation and use of other energy sources. An alternative is coal, whose global reserves constitute about 65% of fossil fuel reserves in the world (Shafiee and Topal, 2009). In this work, ANSYS-Fluent 14.0 is used for simulating coal gasification in a pilot-scale fluidized bed whose characteristics are detailed in the experimental work published by Ocampo et al. (2002). Heterogeneous reactions representing gasification and combustion have been programmed in C ++ and coupled to the software resolution algorithm. A molecular formula has been derived for the volatile material present in the coal particles. It has also been proposed an appropriate stoichiometry for the reaction that represents the release of pyrolysis gas. In addition, homogeneous reactions are also considered in the simulations performed. The bed reactor used by Ocampo et al. (2002) has a side feeding of coal. The height of the unit is 2 m. The bed has initially a height of 1m and is composed by sand and limestone. The simulations were performed on a 2D system with a structured mesh of 4000 cells. Multiphase Euler-Euler approach was used in order to solve the unsteady system. The particles of coal and limestone are spherical and uniform in size. Gidaspow drag model was adopted. Additionally, Gunn correlation was selected for modeling heat transfer between the gas phase and granular phases, as suggested in ANSYS-Fluent (2011) for granular systems. In this paper we present the results of the gas composition at the reactor outlet for different operating conditions and we compare them with experimental results reported by Ocampo et al. (2002). Furthermore the results are compared with those obtained by Armstrong et al. (2011) which have also been obtained by CFD simulation. A stationary bed temperature has also been reported throughout this process, in concordance with the experimental procedure. The results are in good agreement with experimental data and a significant improvement over previous simulations (which use the same technique) has been achieved. It constitutes an important validation of the results obtained in this work.
Fil: Reyes Urrutia, Ramón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina
Fil: Soria, Jose Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina
Fil: Mora Basaure, Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina
Fil: Zambon, Mariana Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina
Fil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina
Materia
Cfd
Fluidized Bed
Coal Gasification
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/11678

id CONICETDig_f4dc9206370fe314868aad8b91bc900a
oai_identifier_str oai:ri.conicet.gov.ar:11336/11678
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling CFD Simulations of coal gasification in a fluidized bedReyes Urrutia, Ramón AndrésSoria, Jose MiguelMora Basaure, ClaudiaZambon, Mariana TeresaMazza, German DelforCfdFluidized BedCoal Gasificationhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In the world there is a trend towards new forms of energy, generated mainly by the progressively increment in demand for non-renewable resources, which are becoming more expensive and scarce. This has motivated countries and companies to seek new alternatives and technologies related to the exploitation and use of other energy sources. An alternative is coal, whose global reserves constitute about 65% of fossil fuel reserves in the world (Shafiee and Topal, 2009). In this work, ANSYS-Fluent 14.0 is used for simulating coal gasification in a pilot-scale fluidized bed whose characteristics are detailed in the experimental work published by Ocampo et al. (2002). Heterogeneous reactions representing gasification and combustion have been programmed in C ++ and coupled to the software resolution algorithm. A molecular formula has been derived for the volatile material present in the coal particles. It has also been proposed an appropriate stoichiometry for the reaction that represents the release of pyrolysis gas. In addition, homogeneous reactions are also considered in the simulations performed. The bed reactor used by Ocampo et al. (2002) has a side feeding of coal. The height of the unit is 2 m. The bed has initially a height of 1m and is composed by sand and limestone. The simulations were performed on a 2D system with a structured mesh of 4000 cells. Multiphase Euler-Euler approach was used in order to solve the unsteady system. The particles of coal and limestone are spherical and uniform in size. Gidaspow drag model was adopted. Additionally, Gunn correlation was selected for modeling heat transfer between the gas phase and granular phases, as suggested in ANSYS-Fluent (2011) for granular systems. In this paper we present the results of the gas composition at the reactor outlet for different operating conditions and we compare them with experimental results reported by Ocampo et al. (2002). Furthermore the results are compared with those obtained by Armstrong et al. (2011) which have also been obtained by CFD simulation. A stationary bed temperature has also been reported throughout this process, in concordance with the experimental procedure. The results are in good agreement with experimental data and a significant improvement over previous simulations (which use the same technique) has been achieved. It constitutes an important validation of the results obtained in this work.Fil: Reyes Urrutia, Ramón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; ArgentinaFil: Soria, Jose Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; ArgentinaFil: Mora Basaure, Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; ArgentinaFil: Zambon, Mariana Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; ArgentinaFil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; ArgentinaSocieté Française de Génie de Procédés2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11678Reyes Urrutia, Ramón Andrés; Soria, Jose Miguel; Mora Basaure, Claudia; Zambon, Mariana Teresa; Mazza, German Delfor; CFD Simulations of coal gasification in a fluidized bed; Societé Française de Génie de Procédés; Récents Progrès en Génie des Procédés; 104; 10-2013; 1-91775-335Xenginfo:eu-repo/semantics/altIdentifier/url/http://diffusion.lavoisier.fr/recherche.asp?query=R%C3%A9cents%20progr%C3%A8s&facet=product_idsupport:1000000&sortfield=-product_parutiondate&current_page=1&page=0&version=0&rows=100&noq=#enteteinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:52Zoai:ri.conicet.gov.ar:11336/11678instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:52.789CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv CFD Simulations of coal gasification in a fluidized bed
title CFD Simulations of coal gasification in a fluidized bed
spellingShingle CFD Simulations of coal gasification in a fluidized bed
Reyes Urrutia, Ramón Andrés
Cfd
Fluidized Bed
Coal Gasification
title_short CFD Simulations of coal gasification in a fluidized bed
title_full CFD Simulations of coal gasification in a fluidized bed
title_fullStr CFD Simulations of coal gasification in a fluidized bed
title_full_unstemmed CFD Simulations of coal gasification in a fluidized bed
title_sort CFD Simulations of coal gasification in a fluidized bed
dc.creator.none.fl_str_mv Reyes Urrutia, Ramón Andrés
Soria, Jose Miguel
Mora Basaure, Claudia
Zambon, Mariana Teresa
Mazza, German Delfor
author Reyes Urrutia, Ramón Andrés
author_facet Reyes Urrutia, Ramón Andrés
Soria, Jose Miguel
Mora Basaure, Claudia
Zambon, Mariana Teresa
Mazza, German Delfor
author_role author
author2 Soria, Jose Miguel
Mora Basaure, Claudia
Zambon, Mariana Teresa
Mazza, German Delfor
author2_role author
author
author
author
dc.subject.none.fl_str_mv Cfd
Fluidized Bed
Coal Gasification
topic Cfd
Fluidized Bed
Coal Gasification
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In the world there is a trend towards new forms of energy, generated mainly by the progressively increment in demand for non-renewable resources, which are becoming more expensive and scarce. This has motivated countries and companies to seek new alternatives and technologies related to the exploitation and use of other energy sources. An alternative is coal, whose global reserves constitute about 65% of fossil fuel reserves in the world (Shafiee and Topal, 2009). In this work, ANSYS-Fluent 14.0 is used for simulating coal gasification in a pilot-scale fluidized bed whose characteristics are detailed in the experimental work published by Ocampo et al. (2002). Heterogeneous reactions representing gasification and combustion have been programmed in C ++ and coupled to the software resolution algorithm. A molecular formula has been derived for the volatile material present in the coal particles. It has also been proposed an appropriate stoichiometry for the reaction that represents the release of pyrolysis gas. In addition, homogeneous reactions are also considered in the simulations performed. The bed reactor used by Ocampo et al. (2002) has a side feeding of coal. The height of the unit is 2 m. The bed has initially a height of 1m and is composed by sand and limestone. The simulations were performed on a 2D system with a structured mesh of 4000 cells. Multiphase Euler-Euler approach was used in order to solve the unsteady system. The particles of coal and limestone are spherical and uniform in size. Gidaspow drag model was adopted. Additionally, Gunn correlation was selected for modeling heat transfer between the gas phase and granular phases, as suggested in ANSYS-Fluent (2011) for granular systems. In this paper we present the results of the gas composition at the reactor outlet for different operating conditions and we compare them with experimental results reported by Ocampo et al. (2002). Furthermore the results are compared with those obtained by Armstrong et al. (2011) which have also been obtained by CFD simulation. A stationary bed temperature has also been reported throughout this process, in concordance with the experimental procedure. The results are in good agreement with experimental data and a significant improvement over previous simulations (which use the same technique) has been achieved. It constitutes an important validation of the results obtained in this work.
Fil: Reyes Urrutia, Ramón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina
Fil: Soria, Jose Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina
Fil: Mora Basaure, Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina
Fil: Zambon, Mariana Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina
Fil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina
description In the world there is a trend towards new forms of energy, generated mainly by the progressively increment in demand for non-renewable resources, which are becoming more expensive and scarce. This has motivated countries and companies to seek new alternatives and technologies related to the exploitation and use of other energy sources. An alternative is coal, whose global reserves constitute about 65% of fossil fuel reserves in the world (Shafiee and Topal, 2009). In this work, ANSYS-Fluent 14.0 is used for simulating coal gasification in a pilot-scale fluidized bed whose characteristics are detailed in the experimental work published by Ocampo et al. (2002). Heterogeneous reactions representing gasification and combustion have been programmed in C ++ and coupled to the software resolution algorithm. A molecular formula has been derived for the volatile material present in the coal particles. It has also been proposed an appropriate stoichiometry for the reaction that represents the release of pyrolysis gas. In addition, homogeneous reactions are also considered in the simulations performed. The bed reactor used by Ocampo et al. (2002) has a side feeding of coal. The height of the unit is 2 m. The bed has initially a height of 1m and is composed by sand and limestone. The simulations were performed on a 2D system with a structured mesh of 4000 cells. Multiphase Euler-Euler approach was used in order to solve the unsteady system. The particles of coal and limestone are spherical and uniform in size. Gidaspow drag model was adopted. Additionally, Gunn correlation was selected for modeling heat transfer between the gas phase and granular phases, as suggested in ANSYS-Fluent (2011) for granular systems. In this paper we present the results of the gas composition at the reactor outlet for different operating conditions and we compare them with experimental results reported by Ocampo et al. (2002). Furthermore the results are compared with those obtained by Armstrong et al. (2011) which have also been obtained by CFD simulation. A stationary bed temperature has also been reported throughout this process, in concordance with the experimental procedure. The results are in good agreement with experimental data and a significant improvement over previous simulations (which use the same technique) has been achieved. It constitutes an important validation of the results obtained in this work.
publishDate 2013
dc.date.none.fl_str_mv 2013-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/11678
Reyes Urrutia, Ramón Andrés; Soria, Jose Miguel; Mora Basaure, Claudia; Zambon, Mariana Teresa; Mazza, German Delfor; CFD Simulations of coal gasification in a fluidized bed; Societé Française de Génie de Procédés; Récents Progrès en Génie des Procédés; 104; 10-2013; 1-9
1775-335X
url http://hdl.handle.net/11336/11678
identifier_str_mv Reyes Urrutia, Ramón Andrés; Soria, Jose Miguel; Mora Basaure, Claudia; Zambon, Mariana Teresa; Mazza, German Delfor; CFD Simulations of coal gasification in a fluidized bed; Societé Française de Génie de Procédés; Récents Progrès en Génie des Procédés; 104; 10-2013; 1-9
1775-335X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://diffusion.lavoisier.fr/recherche.asp?query=R%C3%A9cents%20progr%C3%A8s&facet=product_idsupport:1000000&sortfield=-product_parutiondate&current_page=1&page=0&version=0&rows=100&noq=#entete
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Societé Française de Génie de Procédés
publisher.none.fl_str_mv Societé Française de Génie de Procédés
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270097490575360
score 13.13397