Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery
- Autores
- D'ippolito, Silvana Andrea; Yori, Juan Carlos; Iturria, M. E.; Pieck, Carlos Luis; Vera, Carlos Roman
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A two-step, noncatalytic process for the production of biodiesel is analyzed. The reaction of transesterification of triglycerides with methanol is carried out in supercritical conditions by adopting reaction temperatures of 250-300 °C, higher than the critical temperature of methanol (240 °C). Under these conditions, free fatty acids are converted into fatty acid methyl esters with similar or higher rates than the corresponding triglycerides, and therefore, the process can use high acidity, cheap feedstocks, like yellow grease or beef tallow. The reacting system is also tolerant to water, so it is much more robust than the acid or alkali catalyzed systems which need the removal of water or free fatty acids to prevent catalyst deactivation. In order to minimize the heat consumption and pumping power which are very high in the traditional one-step supercritical method, two reactors with intermediate glycerol removal are used and a heat recovery scheme composed of heat exchangers and adiabatic flash drums is proposed. A computer model was built with experimentally obtained data and with data taken from the literature. The operation mode and the process conditions were determined on the basis of the minimization of the energy consumption (heat duty, cooling services, pumping power) and the fulfillment of product quality constraints (maximum amount of bound glycerin, maximum amount of methanol, and maximum allowable temperature for free glycerol treatment). The results indicate that carrying out the transesterification reaction in two steps enables the use of a low methanol-to-oil ratio (10-15). The preferred operation mode uses a first reaction stage in the perfectly mixed state and a second reaction stage in plug flow mode. Under these conditions, not only can the total pressure of the system be reduced but also the sensible heat of the product stream coming out of the reactor can be used to completely vaporize the unreacted methanol and decrease the heat consumption of the process. © 2007 American Chemical Society.
Fil: D'ippolito, Silvana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Yori, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Iturria, M. E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Pieck, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina - Materia
- Biodiesel
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/65910
Ver los metadatos del registro completo
id |
CONICETDig_f4c4b30770ab26c624a11e7c97dbe3ef |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/65910 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recoveryD'ippolito, Silvana AndreaYori, Juan CarlosIturria, M. E.Pieck, Carlos LuisVera, Carlos RomanBiodieselhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A two-step, noncatalytic process for the production of biodiesel is analyzed. The reaction of transesterification of triglycerides with methanol is carried out in supercritical conditions by adopting reaction temperatures of 250-300 °C, higher than the critical temperature of methanol (240 °C). Under these conditions, free fatty acids are converted into fatty acid methyl esters with similar or higher rates than the corresponding triglycerides, and therefore, the process can use high acidity, cheap feedstocks, like yellow grease or beef tallow. The reacting system is also tolerant to water, so it is much more robust than the acid or alkali catalyzed systems which need the removal of water or free fatty acids to prevent catalyst deactivation. In order to minimize the heat consumption and pumping power which are very high in the traditional one-step supercritical method, two reactors with intermediate glycerol removal are used and a heat recovery scheme composed of heat exchangers and adiabatic flash drums is proposed. A computer model was built with experimentally obtained data and with data taken from the literature. The operation mode and the process conditions were determined on the basis of the minimization of the energy consumption (heat duty, cooling services, pumping power) and the fulfillment of product quality constraints (maximum amount of bound glycerin, maximum amount of methanol, and maximum allowable temperature for free glycerol treatment). The results indicate that carrying out the transesterification reaction in two steps enables the use of a low methanol-to-oil ratio (10-15). The preferred operation mode uses a first reaction stage in the perfectly mixed state and a second reaction stage in plug flow mode. Under these conditions, not only can the total pressure of the system be reduced but also the sensible heat of the product stream coming out of the reactor can be used to completely vaporize the unreacted methanol and decrease the heat consumption of the process. © 2007 American Chemical Society.Fil: D'ippolito, Silvana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Yori, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Iturria, M. E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Pieck, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaAmerican Chemical Society2007-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/65910D'ippolito, Silvana Andrea; Yori, Juan Carlos; Iturria, M. E.; Pieck, Carlos Luis; Vera, Carlos Roman; Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery; American Chemical Society; Energy & Fuels (print); 21; 1; 1-2007; 339-3460887-0624CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ef060183winfo:eu-repo/semantics/altIdentifier/doi/10.1021/ef060183winfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:34Zoai:ri.conicet.gov.ar:11336/65910instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:35.037CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery |
title |
Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery |
spellingShingle |
Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery D'ippolito, Silvana Andrea Biodiesel |
title_short |
Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery |
title_full |
Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery |
title_fullStr |
Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery |
title_full_unstemmed |
Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery |
title_sort |
Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery |
dc.creator.none.fl_str_mv |
D'ippolito, Silvana Andrea Yori, Juan Carlos Iturria, M. E. Pieck, Carlos Luis Vera, Carlos Roman |
author |
D'ippolito, Silvana Andrea |
author_facet |
D'ippolito, Silvana Andrea Yori, Juan Carlos Iturria, M. E. Pieck, Carlos Luis Vera, Carlos Roman |
author_role |
author |
author2 |
Yori, Juan Carlos Iturria, M. E. Pieck, Carlos Luis Vera, Carlos Roman |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Biodiesel |
topic |
Biodiesel |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A two-step, noncatalytic process for the production of biodiesel is analyzed. The reaction of transesterification of triglycerides with methanol is carried out in supercritical conditions by adopting reaction temperatures of 250-300 °C, higher than the critical temperature of methanol (240 °C). Under these conditions, free fatty acids are converted into fatty acid methyl esters with similar or higher rates than the corresponding triglycerides, and therefore, the process can use high acidity, cheap feedstocks, like yellow grease or beef tallow. The reacting system is also tolerant to water, so it is much more robust than the acid or alkali catalyzed systems which need the removal of water or free fatty acids to prevent catalyst deactivation. In order to minimize the heat consumption and pumping power which are very high in the traditional one-step supercritical method, two reactors with intermediate glycerol removal are used and a heat recovery scheme composed of heat exchangers and adiabatic flash drums is proposed. A computer model was built with experimentally obtained data and with data taken from the literature. The operation mode and the process conditions were determined on the basis of the minimization of the energy consumption (heat duty, cooling services, pumping power) and the fulfillment of product quality constraints (maximum amount of bound glycerin, maximum amount of methanol, and maximum allowable temperature for free glycerol treatment). The results indicate that carrying out the transesterification reaction in two steps enables the use of a low methanol-to-oil ratio (10-15). The preferred operation mode uses a first reaction stage in the perfectly mixed state and a second reaction stage in plug flow mode. Under these conditions, not only can the total pressure of the system be reduced but also the sensible heat of the product stream coming out of the reactor can be used to completely vaporize the unreacted methanol and decrease the heat consumption of the process. © 2007 American Chemical Society. Fil: D'ippolito, Silvana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina Fil: Yori, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina Fil: Iturria, M. E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina Fil: Pieck, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina Fil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina |
description |
A two-step, noncatalytic process for the production of biodiesel is analyzed. The reaction of transesterification of triglycerides with methanol is carried out in supercritical conditions by adopting reaction temperatures of 250-300 °C, higher than the critical temperature of methanol (240 °C). Under these conditions, free fatty acids are converted into fatty acid methyl esters with similar or higher rates than the corresponding triglycerides, and therefore, the process can use high acidity, cheap feedstocks, like yellow grease or beef tallow. The reacting system is also tolerant to water, so it is much more robust than the acid or alkali catalyzed systems which need the removal of water or free fatty acids to prevent catalyst deactivation. In order to minimize the heat consumption and pumping power which are very high in the traditional one-step supercritical method, two reactors with intermediate glycerol removal are used and a heat recovery scheme composed of heat exchangers and adiabatic flash drums is proposed. A computer model was built with experimentally obtained data and with data taken from the literature. The operation mode and the process conditions were determined on the basis of the minimization of the energy consumption (heat duty, cooling services, pumping power) and the fulfillment of product quality constraints (maximum amount of bound glycerin, maximum amount of methanol, and maximum allowable temperature for free glycerol treatment). The results indicate that carrying out the transesterification reaction in two steps enables the use of a low methanol-to-oil ratio (10-15). The preferred operation mode uses a first reaction stage in the perfectly mixed state and a second reaction stage in plug flow mode. Under these conditions, not only can the total pressure of the system be reduced but also the sensible heat of the product stream coming out of the reactor can be used to completely vaporize the unreacted methanol and decrease the heat consumption of the process. © 2007 American Chemical Society. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/65910 D'ippolito, Silvana Andrea; Yori, Juan Carlos; Iturria, M. E.; Pieck, Carlos Luis; Vera, Carlos Roman; Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery; American Chemical Society; Energy & Fuels (print); 21; 1; 1-2007; 339-346 0887-0624 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/65910 |
identifier_str_mv |
D'ippolito, Silvana Andrea; Yori, Juan Carlos; Iturria, M. E.; Pieck, Carlos Luis; Vera, Carlos Roman; Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery; American Chemical Society; Energy & Fuels (print); 21; 1; 1-2007; 339-346 0887-0624 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ef060183w info:eu-repo/semantics/altIdentifier/doi/10.1021/ef060183w |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614302647975936 |
score |
13.070432 |