Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery

Autores
D'ippolito, Silvana Andrea; Yori, Juan Carlos; Iturria, M. E.; Pieck, Carlos Luis; Vera, Carlos Roman
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A two-step, noncatalytic process for the production of biodiesel is analyzed. The reaction of transesterification of triglycerides with methanol is carried out in supercritical conditions by adopting reaction temperatures of 250-300 °C, higher than the critical temperature of methanol (240 °C). Under these conditions, free fatty acids are converted into fatty acid methyl esters with similar or higher rates than the corresponding triglycerides, and therefore, the process can use high acidity, cheap feedstocks, like yellow grease or beef tallow. The reacting system is also tolerant to water, so it is much more robust than the acid or alkali catalyzed systems which need the removal of water or free fatty acids to prevent catalyst deactivation. In order to minimize the heat consumption and pumping power which are very high in the traditional one-step supercritical method, two reactors with intermediate glycerol removal are used and a heat recovery scheme composed of heat exchangers and adiabatic flash drums is proposed. A computer model was built with experimentally obtained data and with data taken from the literature. The operation mode and the process conditions were determined on the basis of the minimization of the energy consumption (heat duty, cooling services, pumping power) and the fulfillment of product quality constraints (maximum amount of bound glycerin, maximum amount of methanol, and maximum allowable temperature for free glycerol treatment). The results indicate that carrying out the transesterification reaction in two steps enables the use of a low methanol-to-oil ratio (10-15). The preferred operation mode uses a first reaction stage in the perfectly mixed state and a second reaction stage in plug flow mode. Under these conditions, not only can the total pressure of the system be reduced but also the sensible heat of the product stream coming out of the reactor can be used to completely vaporize the unreacted methanol and decrease the heat consumption of the process. © 2007 American Chemical Society.
Fil: D'ippolito, Silvana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Yori, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Iturria, M. E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Pieck, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Materia
Biodiesel
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/65910

id CONICETDig_f4c4b30770ab26c624a11e7c97dbe3ef
oai_identifier_str oai:ri.conicet.gov.ar:11336/65910
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recoveryD'ippolito, Silvana AndreaYori, Juan CarlosIturria, M. E.Pieck, Carlos LuisVera, Carlos RomanBiodieselhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A two-step, noncatalytic process for the production of biodiesel is analyzed. The reaction of transesterification of triglycerides with methanol is carried out in supercritical conditions by adopting reaction temperatures of 250-300 °C, higher than the critical temperature of methanol (240 °C). Under these conditions, free fatty acids are converted into fatty acid methyl esters with similar or higher rates than the corresponding triglycerides, and therefore, the process can use high acidity, cheap feedstocks, like yellow grease or beef tallow. The reacting system is also tolerant to water, so it is much more robust than the acid or alkali catalyzed systems which need the removal of water or free fatty acids to prevent catalyst deactivation. In order to minimize the heat consumption and pumping power which are very high in the traditional one-step supercritical method, two reactors with intermediate glycerol removal are used and a heat recovery scheme composed of heat exchangers and adiabatic flash drums is proposed. A computer model was built with experimentally obtained data and with data taken from the literature. The operation mode and the process conditions were determined on the basis of the minimization of the energy consumption (heat duty, cooling services, pumping power) and the fulfillment of product quality constraints (maximum amount of bound glycerin, maximum amount of methanol, and maximum allowable temperature for free glycerol treatment). The results indicate that carrying out the transesterification reaction in two steps enables the use of a low methanol-to-oil ratio (10-15). The preferred operation mode uses a first reaction stage in the perfectly mixed state and a second reaction stage in plug flow mode. Under these conditions, not only can the total pressure of the system be reduced but also the sensible heat of the product stream coming out of the reactor can be used to completely vaporize the unreacted methanol and decrease the heat consumption of the process. © 2007 American Chemical Society.Fil: D'ippolito, Silvana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Yori, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Iturria, M. E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Pieck, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaAmerican Chemical Society2007-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/65910D'ippolito, Silvana Andrea; Yori, Juan Carlos; Iturria, M. E.; Pieck, Carlos Luis; Vera, Carlos Roman; Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery; American Chemical Society; Energy & Fuels (print); 21; 1; 1-2007; 339-3460887-0624CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ef060183winfo:eu-repo/semantics/altIdentifier/doi/10.1021/ef060183winfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:34Zoai:ri.conicet.gov.ar:11336/65910instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:35.037CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery
title Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery
spellingShingle Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery
D'ippolito, Silvana Andrea
Biodiesel
title_short Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery
title_full Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery
title_fullStr Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery
title_full_unstemmed Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery
title_sort Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery
dc.creator.none.fl_str_mv D'ippolito, Silvana Andrea
Yori, Juan Carlos
Iturria, M. E.
Pieck, Carlos Luis
Vera, Carlos Roman
author D'ippolito, Silvana Andrea
author_facet D'ippolito, Silvana Andrea
Yori, Juan Carlos
Iturria, M. E.
Pieck, Carlos Luis
Vera, Carlos Roman
author_role author
author2 Yori, Juan Carlos
Iturria, M. E.
Pieck, Carlos Luis
Vera, Carlos Roman
author2_role author
author
author
author
dc.subject.none.fl_str_mv Biodiesel
topic Biodiesel
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A two-step, noncatalytic process for the production of biodiesel is analyzed. The reaction of transesterification of triglycerides with methanol is carried out in supercritical conditions by adopting reaction temperatures of 250-300 °C, higher than the critical temperature of methanol (240 °C). Under these conditions, free fatty acids are converted into fatty acid methyl esters with similar or higher rates than the corresponding triglycerides, and therefore, the process can use high acidity, cheap feedstocks, like yellow grease or beef tallow. The reacting system is also tolerant to water, so it is much more robust than the acid or alkali catalyzed systems which need the removal of water or free fatty acids to prevent catalyst deactivation. In order to minimize the heat consumption and pumping power which are very high in the traditional one-step supercritical method, two reactors with intermediate glycerol removal are used and a heat recovery scheme composed of heat exchangers and adiabatic flash drums is proposed. A computer model was built with experimentally obtained data and with data taken from the literature. The operation mode and the process conditions were determined on the basis of the minimization of the energy consumption (heat duty, cooling services, pumping power) and the fulfillment of product quality constraints (maximum amount of bound glycerin, maximum amount of methanol, and maximum allowable temperature for free glycerol treatment). The results indicate that carrying out the transesterification reaction in two steps enables the use of a low methanol-to-oil ratio (10-15). The preferred operation mode uses a first reaction stage in the perfectly mixed state and a second reaction stage in plug flow mode. Under these conditions, not only can the total pressure of the system be reduced but also the sensible heat of the product stream coming out of the reactor can be used to completely vaporize the unreacted methanol and decrease the heat consumption of the process. © 2007 American Chemical Society.
Fil: D'ippolito, Silvana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Yori, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Iturria, M. E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Pieck, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
description A two-step, noncatalytic process for the production of biodiesel is analyzed. The reaction of transesterification of triglycerides with methanol is carried out in supercritical conditions by adopting reaction temperatures of 250-300 °C, higher than the critical temperature of methanol (240 °C). Under these conditions, free fatty acids are converted into fatty acid methyl esters with similar or higher rates than the corresponding triglycerides, and therefore, the process can use high acidity, cheap feedstocks, like yellow grease or beef tallow. The reacting system is also tolerant to water, so it is much more robust than the acid or alkali catalyzed systems which need the removal of water or free fatty acids to prevent catalyst deactivation. In order to minimize the heat consumption and pumping power which are very high in the traditional one-step supercritical method, two reactors with intermediate glycerol removal are used and a heat recovery scheme composed of heat exchangers and adiabatic flash drums is proposed. A computer model was built with experimentally obtained data and with data taken from the literature. The operation mode and the process conditions were determined on the basis of the minimization of the energy consumption (heat duty, cooling services, pumping power) and the fulfillment of product quality constraints (maximum amount of bound glycerin, maximum amount of methanol, and maximum allowable temperature for free glycerol treatment). The results indicate that carrying out the transesterification reaction in two steps enables the use of a low methanol-to-oil ratio (10-15). The preferred operation mode uses a first reaction stage in the perfectly mixed state and a second reaction stage in plug flow mode. Under these conditions, not only can the total pressure of the system be reduced but also the sensible heat of the product stream coming out of the reactor can be used to completely vaporize the unreacted methanol and decrease the heat consumption of the process. © 2007 American Chemical Society.
publishDate 2007
dc.date.none.fl_str_mv 2007-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/65910
D'ippolito, Silvana Andrea; Yori, Juan Carlos; Iturria, M. E.; Pieck, Carlos Luis; Vera, Carlos Roman; Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery; American Chemical Society; Energy & Fuels (print); 21; 1; 1-2007; 339-346
0887-0624
CONICET Digital
CONICET
url http://hdl.handle.net/11336/65910
identifier_str_mv D'ippolito, Silvana Andrea; Yori, Juan Carlos; Iturria, M. E.; Pieck, Carlos Luis; Vera, Carlos Roman; Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery; American Chemical Society; Energy & Fuels (print); 21; 1; 1-2007; 339-346
0887-0624
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ef060183w
info:eu-repo/semantics/altIdentifier/doi/10.1021/ef060183w
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614302647975936
score 13.070432