Theoretical studies of doped solid oxides for fuel cell applications

Autores
Solano Canchaya, José Gabriel; Gil Rebaza, Arles Víctor; Lemelle, D. S.; Taft, C. A.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Zirconia (ZrO2) is of great importance as a support for systems where high ionic conductivity and mechanical stability are required. Doping/defects have a significant effect on the physical properties of this oxide by stabilizing the most symmetric phases, increasing the ionic conductivity and possible facilitating three phase interconnections in solid oxide fuel cells (SOFCs). Although Zirconia in its pure form exhibits different structures at high temperatures when it is alloyed with other oxides the high temperature cubic polymorph can be stabilized to temperatures low enough for fuel cell applications. Although there has been tremendous technological investment to obtain better materials, we are still far from an optimum solution. We start in this work with theoretical calculations as a support/participation in the search for more appropriate materials that will make this important technology viable in a wide range of applications in the near future. The calculations were performed in the framework of Density Functional (DFT) pseudopotential theory using the Projector Augmented Wave (PAW) with various approximations to the exchange-correlation functional. We investigate structural, electronic/band structure, density of states and charge densities for pure zirconia taking into consideration as well different dopants, their concentrations as well as vacancies for the various polymorphs with interest in fuel cell electrolyte applications.
Fil: Solano Canchaya, José Gabriel. Centro Brasileiro de Pesquisas Físicas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gil Rebaza, Arles Víctor. Universidad Nacional de San Luis. Laboratorio de Ciencias de Superficies y Medios Porosos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lemelle, D. S.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Taft, C. A.. Centro Brasileiro de Pesquisas Físicas; Brasil
Materia
Dft
Doping
Fuel Cells
Zirconia
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23738

id CONICETDig_f492b0e866d8c51dee68d382870d9906
oai_identifier_str oai:ri.conicet.gov.ar:11336/23738
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Theoretical studies of doped solid oxides for fuel cell applicationsSolano Canchaya, José GabrielGil Rebaza, Arles VíctorLemelle, D. S.Taft, C. A.DftDopingFuel CellsZirconiahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Zirconia (ZrO2) is of great importance as a support for systems where high ionic conductivity and mechanical stability are required. Doping/defects have a significant effect on the physical properties of this oxide by stabilizing the most symmetric phases, increasing the ionic conductivity and possible facilitating three phase interconnections in solid oxide fuel cells (SOFCs). Although Zirconia in its pure form exhibits different structures at high temperatures when it is alloyed with other oxides the high temperature cubic polymorph can be stabilized to temperatures low enough for fuel cell applications. Although there has been tremendous technological investment to obtain better materials, we are still far from an optimum solution. We start in this work with theoretical calculations as a support/participation in the search for more appropriate materials that will make this important technology viable in a wide range of applications in the near future. The calculations were performed in the framework of Density Functional (DFT) pseudopotential theory using the Projector Augmented Wave (PAW) with various approximations to the exchange-correlation functional. We investigate structural, electronic/band structure, density of states and charge densities for pure zirconia taking into consideration as well different dopants, their concentrations as well as vacancies for the various polymorphs with interest in fuel cell electrolyte applications.Fil: Solano Canchaya, José Gabriel. Centro Brasileiro de Pesquisas Físicas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gil Rebaza, Arles Víctor. Universidad Nacional de San Luis. Laboratorio de Ciencias de Superficies y Medios Porosos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lemelle, D. S.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Taft, C. A.. Centro Brasileiro de Pesquisas Físicas; BrasilBentham Science Publishers2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23738Solano Canchaya, José Gabriel; Gil Rebaza, Arles Víctor; Lemelle, D. S.; Taft, C. A.; Theoretical studies of doped solid oxides for fuel cell applications; Bentham Science Publishers; Current Physical Chemistry; 4; 1; 2-2014; 45-641877-94681877-9476CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.eurekaselect.com/117247/articleinfo:eu-repo/semantics/altIdentifier/doi/10.2174/18779468113036660022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:17Zoai:ri.conicet.gov.ar:11336/23738instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:18.025CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Theoretical studies of doped solid oxides for fuel cell applications
title Theoretical studies of doped solid oxides for fuel cell applications
spellingShingle Theoretical studies of doped solid oxides for fuel cell applications
Solano Canchaya, José Gabriel
Dft
Doping
Fuel Cells
Zirconia
title_short Theoretical studies of doped solid oxides for fuel cell applications
title_full Theoretical studies of doped solid oxides for fuel cell applications
title_fullStr Theoretical studies of doped solid oxides for fuel cell applications
title_full_unstemmed Theoretical studies of doped solid oxides for fuel cell applications
title_sort Theoretical studies of doped solid oxides for fuel cell applications
dc.creator.none.fl_str_mv Solano Canchaya, José Gabriel
Gil Rebaza, Arles Víctor
Lemelle, D. S.
Taft, C. A.
author Solano Canchaya, José Gabriel
author_facet Solano Canchaya, José Gabriel
Gil Rebaza, Arles Víctor
Lemelle, D. S.
Taft, C. A.
author_role author
author2 Gil Rebaza, Arles Víctor
Lemelle, D. S.
Taft, C. A.
author2_role author
author
author
dc.subject.none.fl_str_mv Dft
Doping
Fuel Cells
Zirconia
topic Dft
Doping
Fuel Cells
Zirconia
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Zirconia (ZrO2) is of great importance as a support for systems where high ionic conductivity and mechanical stability are required. Doping/defects have a significant effect on the physical properties of this oxide by stabilizing the most symmetric phases, increasing the ionic conductivity and possible facilitating three phase interconnections in solid oxide fuel cells (SOFCs). Although Zirconia in its pure form exhibits different structures at high temperatures when it is alloyed with other oxides the high temperature cubic polymorph can be stabilized to temperatures low enough for fuel cell applications. Although there has been tremendous technological investment to obtain better materials, we are still far from an optimum solution. We start in this work with theoretical calculations as a support/participation in the search for more appropriate materials that will make this important technology viable in a wide range of applications in the near future. The calculations were performed in the framework of Density Functional (DFT) pseudopotential theory using the Projector Augmented Wave (PAW) with various approximations to the exchange-correlation functional. We investigate structural, electronic/band structure, density of states and charge densities for pure zirconia taking into consideration as well different dopants, their concentrations as well as vacancies for the various polymorphs with interest in fuel cell electrolyte applications.
Fil: Solano Canchaya, José Gabriel. Centro Brasileiro de Pesquisas Físicas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gil Rebaza, Arles Víctor. Universidad Nacional de San Luis. Laboratorio de Ciencias de Superficies y Medios Porosos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lemelle, D. S.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Taft, C. A.. Centro Brasileiro de Pesquisas Físicas; Brasil
description Zirconia (ZrO2) is of great importance as a support for systems where high ionic conductivity and mechanical stability are required. Doping/defects have a significant effect on the physical properties of this oxide by stabilizing the most symmetric phases, increasing the ionic conductivity and possible facilitating three phase interconnections in solid oxide fuel cells (SOFCs). Although Zirconia in its pure form exhibits different structures at high temperatures when it is alloyed with other oxides the high temperature cubic polymorph can be stabilized to temperatures low enough for fuel cell applications. Although there has been tremendous technological investment to obtain better materials, we are still far from an optimum solution. We start in this work with theoretical calculations as a support/participation in the search for more appropriate materials that will make this important technology viable in a wide range of applications in the near future. The calculations were performed in the framework of Density Functional (DFT) pseudopotential theory using the Projector Augmented Wave (PAW) with various approximations to the exchange-correlation functional. We investigate structural, electronic/band structure, density of states and charge densities for pure zirconia taking into consideration as well different dopants, their concentrations as well as vacancies for the various polymorphs with interest in fuel cell electrolyte applications.
publishDate 2014
dc.date.none.fl_str_mv 2014-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23738
Solano Canchaya, José Gabriel; Gil Rebaza, Arles Víctor; Lemelle, D. S.; Taft, C. A.; Theoretical studies of doped solid oxides for fuel cell applications; Bentham Science Publishers; Current Physical Chemistry; 4; 1; 2-2014; 45-64
1877-9468
1877-9476
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23738
identifier_str_mv Solano Canchaya, José Gabriel; Gil Rebaza, Arles Víctor; Lemelle, D. S.; Taft, C. A.; Theoretical studies of doped solid oxides for fuel cell applications; Bentham Science Publishers; Current Physical Chemistry; 4; 1; 2-2014; 45-64
1877-9468
1877-9476
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.eurekaselect.com/117247/article
info:eu-repo/semantics/altIdentifier/doi/10.2174/18779468113036660022
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Bentham Science Publishers
publisher.none.fl_str_mv Bentham Science Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613021451681792
score 13.070432