Theoretical studies of doped solid oxides for fuel cell applications
- Autores
- Solano Canchaya, José Gabriel; Gil Rebaza, Arles Víctor; Lemelle, D. S.; Taft, C. A.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Zirconia (ZrO2) is of great importance as a support for systems where high ionic conductivity and mechanical stability are required. Doping/defects have a significant effect on the physical properties of this oxide by stabilizing the most symmetric phases, increasing the ionic conductivity and possible facilitating three phase interconnections in solid oxide fuel cells (SOFCs). Although Zirconia in its pure form exhibits different structures at high temperatures when it is alloyed with other oxides the high temperature cubic polymorph can be stabilized to temperatures low enough for fuel cell applications. Although there has been tremendous technological investment to obtain better materials, we are still far from an optimum solution. We start in this work with theoretical calculations as a support/participation in the search for more appropriate materials that will make this important technology viable in a wide range of applications in the near future. The calculations were performed in the framework of Density Functional (DFT) pseudopotential theory using the Projector Augmented Wave (PAW) with various approximations to the exchange-correlation functional. We investigate structural, electronic/band structure, density of states and charge densities for pure zirconia taking into consideration as well different dopants, their concentrations as well as vacancies for the various polymorphs with interest in fuel cell electrolyte applications.
Fil: Solano Canchaya, José Gabriel. Centro Brasileiro de Pesquisas Físicas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gil Rebaza, Arles Víctor. Universidad Nacional de San Luis. Laboratorio de Ciencias de Superficies y Medios Porosos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lemelle, D. S.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Taft, C. A.. Centro Brasileiro de Pesquisas Físicas; Brasil - Materia
-
Dft
Doping
Fuel Cells
Zirconia - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23738
Ver los metadatos del registro completo
id |
CONICETDig_f492b0e866d8c51dee68d382870d9906 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/23738 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Theoretical studies of doped solid oxides for fuel cell applicationsSolano Canchaya, José GabrielGil Rebaza, Arles VíctorLemelle, D. S.Taft, C. A.DftDopingFuel CellsZirconiahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Zirconia (ZrO2) is of great importance as a support for systems where high ionic conductivity and mechanical stability are required. Doping/defects have a significant effect on the physical properties of this oxide by stabilizing the most symmetric phases, increasing the ionic conductivity and possible facilitating three phase interconnections in solid oxide fuel cells (SOFCs). Although Zirconia in its pure form exhibits different structures at high temperatures when it is alloyed with other oxides the high temperature cubic polymorph can be stabilized to temperatures low enough for fuel cell applications. Although there has been tremendous technological investment to obtain better materials, we are still far from an optimum solution. We start in this work with theoretical calculations as a support/participation in the search for more appropriate materials that will make this important technology viable in a wide range of applications in the near future. The calculations were performed in the framework of Density Functional (DFT) pseudopotential theory using the Projector Augmented Wave (PAW) with various approximations to the exchange-correlation functional. We investigate structural, electronic/band structure, density of states and charge densities for pure zirconia taking into consideration as well different dopants, their concentrations as well as vacancies for the various polymorphs with interest in fuel cell electrolyte applications.Fil: Solano Canchaya, José Gabriel. Centro Brasileiro de Pesquisas Físicas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gil Rebaza, Arles Víctor. Universidad Nacional de San Luis. Laboratorio de Ciencias de Superficies y Medios Porosos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lemelle, D. S.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Taft, C. A.. Centro Brasileiro de Pesquisas Físicas; BrasilBentham Science Publishers2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23738Solano Canchaya, José Gabriel; Gil Rebaza, Arles Víctor; Lemelle, D. S.; Taft, C. A.; Theoretical studies of doped solid oxides for fuel cell applications; Bentham Science Publishers; Current Physical Chemistry; 4; 1; 2-2014; 45-641877-94681877-9476CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.eurekaselect.com/117247/articleinfo:eu-repo/semantics/altIdentifier/doi/10.2174/18779468113036660022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:17Zoai:ri.conicet.gov.ar:11336/23738instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:18.025CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Theoretical studies of doped solid oxides for fuel cell applications |
title |
Theoretical studies of doped solid oxides for fuel cell applications |
spellingShingle |
Theoretical studies of doped solid oxides for fuel cell applications Solano Canchaya, José Gabriel Dft Doping Fuel Cells Zirconia |
title_short |
Theoretical studies of doped solid oxides for fuel cell applications |
title_full |
Theoretical studies of doped solid oxides for fuel cell applications |
title_fullStr |
Theoretical studies of doped solid oxides for fuel cell applications |
title_full_unstemmed |
Theoretical studies of doped solid oxides for fuel cell applications |
title_sort |
Theoretical studies of doped solid oxides for fuel cell applications |
dc.creator.none.fl_str_mv |
Solano Canchaya, José Gabriel Gil Rebaza, Arles Víctor Lemelle, D. S. Taft, C. A. |
author |
Solano Canchaya, José Gabriel |
author_facet |
Solano Canchaya, José Gabriel Gil Rebaza, Arles Víctor Lemelle, D. S. Taft, C. A. |
author_role |
author |
author2 |
Gil Rebaza, Arles Víctor Lemelle, D. S. Taft, C. A. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Dft Doping Fuel Cells Zirconia |
topic |
Dft Doping Fuel Cells Zirconia |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Zirconia (ZrO2) is of great importance as a support for systems where high ionic conductivity and mechanical stability are required. Doping/defects have a significant effect on the physical properties of this oxide by stabilizing the most symmetric phases, increasing the ionic conductivity and possible facilitating three phase interconnections in solid oxide fuel cells (SOFCs). Although Zirconia in its pure form exhibits different structures at high temperatures when it is alloyed with other oxides the high temperature cubic polymorph can be stabilized to temperatures low enough for fuel cell applications. Although there has been tremendous technological investment to obtain better materials, we are still far from an optimum solution. We start in this work with theoretical calculations as a support/participation in the search for more appropriate materials that will make this important technology viable in a wide range of applications in the near future. The calculations were performed in the framework of Density Functional (DFT) pseudopotential theory using the Projector Augmented Wave (PAW) with various approximations to the exchange-correlation functional. We investigate structural, electronic/band structure, density of states and charge densities for pure zirconia taking into consideration as well different dopants, their concentrations as well as vacancies for the various polymorphs with interest in fuel cell electrolyte applications. Fil: Solano Canchaya, José Gabriel. Centro Brasileiro de Pesquisas Físicas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gil Rebaza, Arles Víctor. Universidad Nacional de San Luis. Laboratorio de Ciencias de Superficies y Medios Porosos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lemelle, D. S.. Centro Brasileiro de Pesquisas Físicas; Brasil Fil: Taft, C. A.. Centro Brasileiro de Pesquisas Físicas; Brasil |
description |
Zirconia (ZrO2) is of great importance as a support for systems where high ionic conductivity and mechanical stability are required. Doping/defects have a significant effect on the physical properties of this oxide by stabilizing the most symmetric phases, increasing the ionic conductivity and possible facilitating three phase interconnections in solid oxide fuel cells (SOFCs). Although Zirconia in its pure form exhibits different structures at high temperatures when it is alloyed with other oxides the high temperature cubic polymorph can be stabilized to temperatures low enough for fuel cell applications. Although there has been tremendous technological investment to obtain better materials, we are still far from an optimum solution. We start in this work with theoretical calculations as a support/participation in the search for more appropriate materials that will make this important technology viable in a wide range of applications in the near future. The calculations were performed in the framework of Density Functional (DFT) pseudopotential theory using the Projector Augmented Wave (PAW) with various approximations to the exchange-correlation functional. We investigate structural, electronic/band structure, density of states and charge densities for pure zirconia taking into consideration as well different dopants, their concentrations as well as vacancies for the various polymorphs with interest in fuel cell electrolyte applications. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/23738 Solano Canchaya, José Gabriel; Gil Rebaza, Arles Víctor; Lemelle, D. S.; Taft, C. A.; Theoretical studies of doped solid oxides for fuel cell applications; Bentham Science Publishers; Current Physical Chemistry; 4; 1; 2-2014; 45-64 1877-9468 1877-9476 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/23738 |
identifier_str_mv |
Solano Canchaya, José Gabriel; Gil Rebaza, Arles Víctor; Lemelle, D. S.; Taft, C. A.; Theoretical studies of doped solid oxides for fuel cell applications; Bentham Science Publishers; Current Physical Chemistry; 4; 1; 2-2014; 45-64 1877-9468 1877-9476 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.eurekaselect.com/117247/article info:eu-repo/semantics/altIdentifier/doi/10.2174/18779468113036660022 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Bentham Science Publishers |
publisher.none.fl_str_mv |
Bentham Science Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613021451681792 |
score |
13.070432 |