Layer-to-layer distance determines the performance of 3D bio-electrochemical lamellar anodes in microbial energy transduction processes
- Autores
- Massazza, Diego Ariel; Busalmen, Juan Pablo; Parra, Rodrigo; Romeo, Hernan Esteban
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Microbial fuel cells (MFCs) harness the metabolic machinery of electro-active bacteria to transfer electrons from organic molecules to polarized anodes. In this context, increasingly higher anode surface areas have been pursued for maximizing MFC performance. In this study we prepared 3D layered Ti4O7 electrodes with different interlayer spacings (from 10 to 100 μm) but maintaining the same total void fraction (90%), so as to modify the electrode surface-to-volume ratios. This allowed us to test the hypothesis that there must be a limit in surface area per unit volume restricting the efficiency of 3D porous bio-electrochemical anodes. The lamellar scaffolds were evaluated in three-electrode cells cultured with G. sulfurreducens. Regardless of the electrode interlayer spacing or the biofilm developmental stage, the electron transfer rate was constant (0.11 pA per bacterium), with current scaling linearly with the size of the microbial population. However, maximum volumetric current densities (20 ± 0.8 kA m-3) were not obtained from electrodes with maximum surface-to-volume ratios (shorter interlayer distances), because bacterial biomass was not directly proportional to the surface area. This demonstrated that, by controlling the spacing between layers, it is possible to modulate the amount of bacteria per electrode unit volume, this ratio determining the final electrode performance. The limit obtained in surface area suggested that other effects, such as fluid dynamic constraints inside the "slit-shaped" pores, must be playing a critical role in anode performance.
Fil: Massazza, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Busalmen, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Parra, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Romeo, Hernan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina - Materia
-
Biofilms
Electrodos porosos
Sistemas bioelectroquímicos
bio-electrochemical - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/81645
Ver los metadatos del registro completo
id |
CONICETDig_f48362197ccb3ac4d31d1b98ed3c4d6f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/81645 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Layer-to-layer distance determines the performance of 3D bio-electrochemical lamellar anodes in microbial energy transduction processesMassazza, Diego ArielBusalmen, Juan PabloParra, RodrigoRomeo, Hernan EstebanBiofilmsElectrodos porososSistemas bioelectroquímicosbio-electrochemicalhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Microbial fuel cells (MFCs) harness the metabolic machinery of electro-active bacteria to transfer electrons from organic molecules to polarized anodes. In this context, increasingly higher anode surface areas have been pursued for maximizing MFC performance. In this study we prepared 3D layered Ti4O7 electrodes with different interlayer spacings (from 10 to 100 μm) but maintaining the same total void fraction (90%), so as to modify the electrode surface-to-volume ratios. This allowed us to test the hypothesis that there must be a limit in surface area per unit volume restricting the efficiency of 3D porous bio-electrochemical anodes. The lamellar scaffolds were evaluated in three-electrode cells cultured with G. sulfurreducens. Regardless of the electrode interlayer spacing or the biofilm developmental stage, the electron transfer rate was constant (0.11 pA per bacterium), with current scaling linearly with the size of the microbial population. However, maximum volumetric current densities (20 ± 0.8 kA m-3) were not obtained from electrodes with maximum surface-to-volume ratios (shorter interlayer distances), because bacterial biomass was not directly proportional to the surface area. This demonstrated that, by controlling the spacing between layers, it is possible to modulate the amount of bacteria per electrode unit volume, this ratio determining the final electrode performance. The limit obtained in surface area suggested that other effects, such as fluid dynamic constraints inside the "slit-shaped" pores, must be playing a critical role in anode performance.Fil: Massazza, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Busalmen, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Parra, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Romeo, Hernan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaRoyal Society of Chemistry2018-04-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/81645Massazza, Diego Ariel; Busalmen, Juan Pablo; Parra, Rodrigo; Romeo, Hernan Esteban; Layer-to-layer distance determines the performance of 3D bio-electrochemical lamellar anodes in microbial energy transduction processes; Royal Society of Chemistry; Journal of Materials Chemistry A; 6; 21; 24-4-2018; 10019-100272050-74882050-7496CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2018/TA/C8TA02793Einfo:eu-repo/semantics/altIdentifier/doi/10.1039/C8TA02793Einfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:55Zoai:ri.conicet.gov.ar:11336/81645instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:55.955CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Layer-to-layer distance determines the performance of 3D bio-electrochemical lamellar anodes in microbial energy transduction processes |
title |
Layer-to-layer distance determines the performance of 3D bio-electrochemical lamellar anodes in microbial energy transduction processes |
spellingShingle |
Layer-to-layer distance determines the performance of 3D bio-electrochemical lamellar anodes in microbial energy transduction processes Massazza, Diego Ariel Biofilms Electrodos porosos Sistemas bioelectroquímicos bio-electrochemical |
title_short |
Layer-to-layer distance determines the performance of 3D bio-electrochemical lamellar anodes in microbial energy transduction processes |
title_full |
Layer-to-layer distance determines the performance of 3D bio-electrochemical lamellar anodes in microbial energy transduction processes |
title_fullStr |
Layer-to-layer distance determines the performance of 3D bio-electrochemical lamellar anodes in microbial energy transduction processes |
title_full_unstemmed |
Layer-to-layer distance determines the performance of 3D bio-electrochemical lamellar anodes in microbial energy transduction processes |
title_sort |
Layer-to-layer distance determines the performance of 3D bio-electrochemical lamellar anodes in microbial energy transduction processes |
dc.creator.none.fl_str_mv |
Massazza, Diego Ariel Busalmen, Juan Pablo Parra, Rodrigo Romeo, Hernan Esteban |
author |
Massazza, Diego Ariel |
author_facet |
Massazza, Diego Ariel Busalmen, Juan Pablo Parra, Rodrigo Romeo, Hernan Esteban |
author_role |
author |
author2 |
Busalmen, Juan Pablo Parra, Rodrigo Romeo, Hernan Esteban |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Biofilms Electrodos porosos Sistemas bioelectroquímicos bio-electrochemical |
topic |
Biofilms Electrodos porosos Sistemas bioelectroquímicos bio-electrochemical |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Microbial fuel cells (MFCs) harness the metabolic machinery of electro-active bacteria to transfer electrons from organic molecules to polarized anodes. In this context, increasingly higher anode surface areas have been pursued for maximizing MFC performance. In this study we prepared 3D layered Ti4O7 electrodes with different interlayer spacings (from 10 to 100 μm) but maintaining the same total void fraction (90%), so as to modify the electrode surface-to-volume ratios. This allowed us to test the hypothesis that there must be a limit in surface area per unit volume restricting the efficiency of 3D porous bio-electrochemical anodes. The lamellar scaffolds were evaluated in three-electrode cells cultured with G. sulfurreducens. Regardless of the electrode interlayer spacing or the biofilm developmental stage, the electron transfer rate was constant (0.11 pA per bacterium), with current scaling linearly with the size of the microbial population. However, maximum volumetric current densities (20 ± 0.8 kA m-3) were not obtained from electrodes with maximum surface-to-volume ratios (shorter interlayer distances), because bacterial biomass was not directly proportional to the surface area. This demonstrated that, by controlling the spacing between layers, it is possible to modulate the amount of bacteria per electrode unit volume, this ratio determining the final electrode performance. The limit obtained in surface area suggested that other effects, such as fluid dynamic constraints inside the "slit-shaped" pores, must be playing a critical role in anode performance. Fil: Massazza, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Busalmen, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Parra, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Romeo, Hernan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina |
description |
Microbial fuel cells (MFCs) harness the metabolic machinery of electro-active bacteria to transfer electrons from organic molecules to polarized anodes. In this context, increasingly higher anode surface areas have been pursued for maximizing MFC performance. In this study we prepared 3D layered Ti4O7 electrodes with different interlayer spacings (from 10 to 100 μm) but maintaining the same total void fraction (90%), so as to modify the electrode surface-to-volume ratios. This allowed us to test the hypothesis that there must be a limit in surface area per unit volume restricting the efficiency of 3D porous bio-electrochemical anodes. The lamellar scaffolds were evaluated in three-electrode cells cultured with G. sulfurreducens. Regardless of the electrode interlayer spacing or the biofilm developmental stage, the electron transfer rate was constant (0.11 pA per bacterium), with current scaling linearly with the size of the microbial population. However, maximum volumetric current densities (20 ± 0.8 kA m-3) were not obtained from electrodes with maximum surface-to-volume ratios (shorter interlayer distances), because bacterial biomass was not directly proportional to the surface area. This demonstrated that, by controlling the spacing between layers, it is possible to modulate the amount of bacteria per electrode unit volume, this ratio determining the final electrode performance. The limit obtained in surface area suggested that other effects, such as fluid dynamic constraints inside the "slit-shaped" pores, must be playing a critical role in anode performance. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-24 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/81645 Massazza, Diego Ariel; Busalmen, Juan Pablo; Parra, Rodrigo; Romeo, Hernan Esteban; Layer-to-layer distance determines the performance of 3D bio-electrochemical lamellar anodes in microbial energy transduction processes; Royal Society of Chemistry; Journal of Materials Chemistry A; 6; 21; 24-4-2018; 10019-10027 2050-7488 2050-7496 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/81645 |
identifier_str_mv |
Massazza, Diego Ariel; Busalmen, Juan Pablo; Parra, Rodrigo; Romeo, Hernan Esteban; Layer-to-layer distance determines the performance of 3D bio-electrochemical lamellar anodes in microbial energy transduction processes; Royal Society of Chemistry; Journal of Materials Chemistry A; 6; 21; 24-4-2018; 10019-10027 2050-7488 2050-7496 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2018/TA/C8TA02793E info:eu-repo/semantics/altIdentifier/doi/10.1039/C8TA02793E |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613046782132224 |
score |
13.070432 |