A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds
- Autores
- Gallo, Leandro César; Cristallini, Ernesto Osvaldo; Svarc, Marcela
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The fitting of a plane to data points is essential to the geosciences. However, it is recognized that the reliability of these best fit planes depends upon the point set distribution and geometry, evaluated in terms of the eigen-based parameters derived from the moment of inertia analysis. Despite its significance, few studies have addressed the uncertainties of the analysis, which can adversely affect the reproduction of results one of the cornerstones of scientific endeavor. Aiming to contribute toward the neglected issue of the moment of inertia precision, we have developed a bootstrap resampling scheme to empirically discover the distribution of uncertainties in the orientation of best fit planes. Dispersion of the bootstrapped normal vectors to the best fit plane is regarded as a measure of precision, evaluated with the maximum angular distance from the optimal solution. This rationale was tested using Monte Carlo-generated samples covering a comprehensive range of shape parameters to assess the dependence between eigen parameters and their inherent bias. Our results show that the oblateness of the point cloud is a robust parameter to assess the reliability of the best fit plane. Given this, the method was then applied to a publicly available lidar data set. We argue that georeferenced point clouds with an oblateness parameter greater than 3 and 1.5 may be placed at 95% confidence levels of 5° and 10°, respectively. We propose using these values as thresholds to obtain robust best fit planes, guaranteeing reproducible results for scientific research.
Fil: Gallo, Leandro César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina
Fil: Cristallini, Ernesto Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
Fil: Svarc, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina - Materia
-
BEST FIT PLANE
BOOTSTRAP STATISTICS
MOMENT OF INERTIA ANALYSIS
MONTE CARLO SIMULATION
ORIENTATION OF STRUCTURAL HETEROGENEITIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87672
Ver los metadatos del registro completo
id |
CONICETDig_f403fbc979b366b2d09c7e563cfb0b34 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87672 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable ThresholdsGallo, Leandro CésarCristallini, Ernesto OsvaldoSvarc, MarcelaBEST FIT PLANEBOOTSTRAP STATISTICSMOMENT OF INERTIA ANALYSISMONTE CARLO SIMULATIONORIENTATION OF STRUCTURAL HETEROGENEITIEShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The fitting of a plane to data points is essential to the geosciences. However, it is recognized that the reliability of these best fit planes depends upon the point set distribution and geometry, evaluated in terms of the eigen-based parameters derived from the moment of inertia analysis. Despite its significance, few studies have addressed the uncertainties of the analysis, which can adversely affect the reproduction of results one of the cornerstones of scientific endeavor. Aiming to contribute toward the neglected issue of the moment of inertia precision, we have developed a bootstrap resampling scheme to empirically discover the distribution of uncertainties in the orientation of best fit planes. Dispersion of the bootstrapped normal vectors to the best fit plane is regarded as a measure of precision, evaluated with the maximum angular distance from the optimal solution. This rationale was tested using Monte Carlo-generated samples covering a comprehensive range of shape parameters to assess the dependence between eigen parameters and their inherent bias. Our results show that the oblateness of the point cloud is a robust parameter to assess the reliability of the best fit plane. Given this, the method was then applied to a publicly available lidar data set. We argue that georeferenced point clouds with an oblateness parameter greater than 3 and 1.5 may be placed at 95% confidence levels of 5° and 10°, respectively. We propose using these values as thresholds to obtain robust best fit planes, guaranteeing reproducible results for scientific research.Fil: Gallo, Leandro César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Cristallini, Ernesto Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Svarc, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; ArgentinaAmerican Geophysical Union2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87672Gallo, Leandro César; Cristallini, Ernesto Osvaldo; Svarc, Marcela; A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds; American Geophysical Union; Journal of Geophysical Research: Solid Earth; 123; 11; 11-2018; 10,297-10,3082169-93132169-9356CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JB016319info:eu-repo/semantics/altIdentifier/doi/10.1029/2018JB016319info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:26Zoai:ri.conicet.gov.ar:11336/87672instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:27.185CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds |
title |
A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds |
spellingShingle |
A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds Gallo, Leandro César BEST FIT PLANE BOOTSTRAP STATISTICS MOMENT OF INERTIA ANALYSIS MONTE CARLO SIMULATION ORIENTATION OF STRUCTURAL HETEROGENEITIES |
title_short |
A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds |
title_full |
A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds |
title_fullStr |
A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds |
title_full_unstemmed |
A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds |
title_sort |
A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds |
dc.creator.none.fl_str_mv |
Gallo, Leandro César Cristallini, Ernesto Osvaldo Svarc, Marcela |
author |
Gallo, Leandro César |
author_facet |
Gallo, Leandro César Cristallini, Ernesto Osvaldo Svarc, Marcela |
author_role |
author |
author2 |
Cristallini, Ernesto Osvaldo Svarc, Marcela |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BEST FIT PLANE BOOTSTRAP STATISTICS MOMENT OF INERTIA ANALYSIS MONTE CARLO SIMULATION ORIENTATION OF STRUCTURAL HETEROGENEITIES |
topic |
BEST FIT PLANE BOOTSTRAP STATISTICS MOMENT OF INERTIA ANALYSIS MONTE CARLO SIMULATION ORIENTATION OF STRUCTURAL HETEROGENEITIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The fitting of a plane to data points is essential to the geosciences. However, it is recognized that the reliability of these best fit planes depends upon the point set distribution and geometry, evaluated in terms of the eigen-based parameters derived from the moment of inertia analysis. Despite its significance, few studies have addressed the uncertainties of the analysis, which can adversely affect the reproduction of results one of the cornerstones of scientific endeavor. Aiming to contribute toward the neglected issue of the moment of inertia precision, we have developed a bootstrap resampling scheme to empirically discover the distribution of uncertainties in the orientation of best fit planes. Dispersion of the bootstrapped normal vectors to the best fit plane is regarded as a measure of precision, evaluated with the maximum angular distance from the optimal solution. This rationale was tested using Monte Carlo-generated samples covering a comprehensive range of shape parameters to assess the dependence between eigen parameters and their inherent bias. Our results show that the oblateness of the point cloud is a robust parameter to assess the reliability of the best fit plane. Given this, the method was then applied to a publicly available lidar data set. We argue that georeferenced point clouds with an oblateness parameter greater than 3 and 1.5 may be placed at 95% confidence levels of 5° and 10°, respectively. We propose using these values as thresholds to obtain robust best fit planes, guaranteeing reproducible results for scientific research. Fil: Gallo, Leandro César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina Fil: Cristallini, Ernesto Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina Fil: Svarc, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina |
description |
The fitting of a plane to data points is essential to the geosciences. However, it is recognized that the reliability of these best fit planes depends upon the point set distribution and geometry, evaluated in terms of the eigen-based parameters derived from the moment of inertia analysis. Despite its significance, few studies have addressed the uncertainties of the analysis, which can adversely affect the reproduction of results one of the cornerstones of scientific endeavor. Aiming to contribute toward the neglected issue of the moment of inertia precision, we have developed a bootstrap resampling scheme to empirically discover the distribution of uncertainties in the orientation of best fit planes. Dispersion of the bootstrapped normal vectors to the best fit plane is regarded as a measure of precision, evaluated with the maximum angular distance from the optimal solution. This rationale was tested using Monte Carlo-generated samples covering a comprehensive range of shape parameters to assess the dependence between eigen parameters and their inherent bias. Our results show that the oblateness of the point cloud is a robust parameter to assess the reliability of the best fit plane. Given this, the method was then applied to a publicly available lidar data set. We argue that georeferenced point clouds with an oblateness parameter greater than 3 and 1.5 may be placed at 95% confidence levels of 5° and 10°, respectively. We propose using these values as thresholds to obtain robust best fit planes, guaranteeing reproducible results for scientific research. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87672 Gallo, Leandro César; Cristallini, Ernesto Osvaldo; Svarc, Marcela; A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds; American Geophysical Union; Journal of Geophysical Research: Solid Earth; 123; 11; 11-2018; 10,297-10,308 2169-9313 2169-9356 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87672 |
identifier_str_mv |
Gallo, Leandro César; Cristallini, Ernesto Osvaldo; Svarc, Marcela; A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds; American Geophysical Union; Journal of Geophysical Research: Solid Earth; 123; 11; 11-2018; 10,297-10,308 2169-9313 2169-9356 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JB016319 info:eu-repo/semantics/altIdentifier/doi/10.1029/2018JB016319 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Geophysical Union |
publisher.none.fl_str_mv |
American Geophysical Union |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613934459387904 |
score |
13.070432 |