Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications
- Autores
- Lavorato, Gabriel Carlos; Das, Raja; Alonso Masa, Javier; Phan, Manh Huong; Srikanth, Hariharan
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Heating at the nanoscale is the basis of several biomedical applications, including magnetic hyperthermia therapies and heat-triggered drug delivery. The combination of multiple inorganic materials in hybrid magnetic nanoparticles provides versatile platforms to achieve an efficient heat delivery upon different external stimuli or to get an optical feedback during the process. However, the successful design and application of these nanomaterials usually require intricate synthesis routes and their magnetic response is still not fully understood. In this review we give an overview of the novel systems reported in the last few years, which have been mostly obtained by organic phase-based synthesis and epitaxial growth processes. Since the heating efficiency of hybrid magnetic nanoparticles often relies on the exchange-interaction between their components, we discuss various interface-phenomena that are responsible for their magnetic properties. Finally, followed by a brief comment on future directions in the field, we outline recent advances on multifunctional nanoparticles that can boost the heating power with light and combine heating and temperature sensing in a single nanomaterial.
Fil: Lavorato, Gabriel Carlos. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Das, Raja. Phenikaa Research And Technology Institute; Vietnam. Phenikaa University; Vietnam
Fil: Alonso Masa, Javier. Universidad de Cantabria; España
Fil: Phan, Manh Huong. University of South Florida; Estados Unidos
Fil: Srikanth, Hariharan. University of South Florida; Estados Unidos - Materia
-
MAGNETIC NANOPARTICLES
HYBRID NANOPARTICLES
CORE/SHELL NANOPARTICLES
HEATING EFFICIENCY
MAGNETIC HYPERTHERMIA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/171659
Ver los metadatos del registro completo
id |
CONICETDig_f3d48d58ce105675e75ca23f42a10d73 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/171659 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applicationsLavorato, Gabriel CarlosDas, RajaAlonso Masa, JavierPhan, Manh HuongSrikanth, HariharanMAGNETIC NANOPARTICLESHYBRID NANOPARTICLESCORE/SHELL NANOPARTICLESHEATING EFFICIENCYMAGNETIC HYPERTHERMIAhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Heating at the nanoscale is the basis of several biomedical applications, including magnetic hyperthermia therapies and heat-triggered drug delivery. The combination of multiple inorganic materials in hybrid magnetic nanoparticles provides versatile platforms to achieve an efficient heat delivery upon different external stimuli or to get an optical feedback during the process. However, the successful design and application of these nanomaterials usually require intricate synthesis routes and their magnetic response is still not fully understood. In this review we give an overview of the novel systems reported in the last few years, which have been mostly obtained by organic phase-based synthesis and epitaxial growth processes. Since the heating efficiency of hybrid magnetic nanoparticles often relies on the exchange-interaction between their components, we discuss various interface-phenomena that are responsible for their magnetic properties. Finally, followed by a brief comment on future directions in the field, we outline recent advances on multifunctional nanoparticles that can boost the heating power with light and combine heating and temperature sensing in a single nanomaterial.Fil: Lavorato, Gabriel Carlos. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Das, Raja. Phenikaa Research And Technology Institute; Vietnam. Phenikaa University; VietnamFil: Alonso Masa, Javier. Universidad de Cantabria; EspañaFil: Phan, Manh Huong. University of South Florida; Estados UnidosFil: Srikanth, Hariharan. University of South Florida; Estados UnidosRoyal Society of Chemistry2021-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/171659Lavorato, Gabriel Carlos; Das, Raja; Alonso Masa, Javier; Phan, Manh Huong; Srikanth, Hariharan; Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications; Royal Society of Chemistry; Nanoscale Advances; 3; 4; 2-2021; 867-8882516-0230CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/d0na00828ainfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2021/NA/D0NA00828Ainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:29Zoai:ri.conicet.gov.ar:11336/171659instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:29.567CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications |
title |
Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications |
spellingShingle |
Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications Lavorato, Gabriel Carlos MAGNETIC NANOPARTICLES HYBRID NANOPARTICLES CORE/SHELL NANOPARTICLES HEATING EFFICIENCY MAGNETIC HYPERTHERMIA |
title_short |
Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications |
title_full |
Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications |
title_fullStr |
Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications |
title_full_unstemmed |
Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications |
title_sort |
Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications |
dc.creator.none.fl_str_mv |
Lavorato, Gabriel Carlos Das, Raja Alonso Masa, Javier Phan, Manh Huong Srikanth, Hariharan |
author |
Lavorato, Gabriel Carlos |
author_facet |
Lavorato, Gabriel Carlos Das, Raja Alonso Masa, Javier Phan, Manh Huong Srikanth, Hariharan |
author_role |
author |
author2 |
Das, Raja Alonso Masa, Javier Phan, Manh Huong Srikanth, Hariharan |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
MAGNETIC NANOPARTICLES HYBRID NANOPARTICLES CORE/SHELL NANOPARTICLES HEATING EFFICIENCY MAGNETIC HYPERTHERMIA |
topic |
MAGNETIC NANOPARTICLES HYBRID NANOPARTICLES CORE/SHELL NANOPARTICLES HEATING EFFICIENCY MAGNETIC HYPERTHERMIA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Heating at the nanoscale is the basis of several biomedical applications, including magnetic hyperthermia therapies and heat-triggered drug delivery. The combination of multiple inorganic materials in hybrid magnetic nanoparticles provides versatile platforms to achieve an efficient heat delivery upon different external stimuli or to get an optical feedback during the process. However, the successful design and application of these nanomaterials usually require intricate synthesis routes and their magnetic response is still not fully understood. In this review we give an overview of the novel systems reported in the last few years, which have been mostly obtained by organic phase-based synthesis and epitaxial growth processes. Since the heating efficiency of hybrid magnetic nanoparticles often relies on the exchange-interaction between their components, we discuss various interface-phenomena that are responsible for their magnetic properties. Finally, followed by a brief comment on future directions in the field, we outline recent advances on multifunctional nanoparticles that can boost the heating power with light and combine heating and temperature sensing in a single nanomaterial. Fil: Lavorato, Gabriel Carlos. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Das, Raja. Phenikaa Research And Technology Institute; Vietnam. Phenikaa University; Vietnam Fil: Alonso Masa, Javier. Universidad de Cantabria; España Fil: Phan, Manh Huong. University of South Florida; Estados Unidos Fil: Srikanth, Hariharan. University of South Florida; Estados Unidos |
description |
Heating at the nanoscale is the basis of several biomedical applications, including magnetic hyperthermia therapies and heat-triggered drug delivery. The combination of multiple inorganic materials in hybrid magnetic nanoparticles provides versatile platforms to achieve an efficient heat delivery upon different external stimuli or to get an optical feedback during the process. However, the successful design and application of these nanomaterials usually require intricate synthesis routes and their magnetic response is still not fully understood. In this review we give an overview of the novel systems reported in the last few years, which have been mostly obtained by organic phase-based synthesis and epitaxial growth processes. Since the heating efficiency of hybrid magnetic nanoparticles often relies on the exchange-interaction between their components, we discuss various interface-phenomena that are responsible for their magnetic properties. Finally, followed by a brief comment on future directions in the field, we outline recent advances on multifunctional nanoparticles that can boost the heating power with light and combine heating and temperature sensing in a single nanomaterial. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/171659 Lavorato, Gabriel Carlos; Das, Raja; Alonso Masa, Javier; Phan, Manh Huong; Srikanth, Hariharan; Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications; Royal Society of Chemistry; Nanoscale Advances; 3; 4; 2-2021; 867-888 2516-0230 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/171659 |
identifier_str_mv |
Lavorato, Gabriel Carlos; Das, Raja; Alonso Masa, Javier; Phan, Manh Huong; Srikanth, Hariharan; Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications; Royal Society of Chemistry; Nanoscale Advances; 3; 4; 2-2021; 867-888 2516-0230 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/d0na00828a info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2021/NA/D0NA00828A |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269960855879680 |
score |
13.13397 |