Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications

Autores
Lavorato, Gabriel Carlos; Das, Raja; Alonso Masa, Javier; Phan, Manh Huong; Srikanth, Hariharan
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Heating at the nanoscale is the basis of several biomedical applications, including magnetic hyperthermia therapies and heat-triggered drug delivery. The combination of multiple inorganic materials in hybrid magnetic nanoparticles provides versatile platforms to achieve an efficient heat delivery upon different external stimuli or to get an optical feedback during the process. However, the successful design and application of these nanomaterials usually require intricate synthesis routes and their magnetic response is still not fully understood. In this review we give an overview of the novel systems reported in the last few years, which have been mostly obtained by organic phase-based synthesis and epitaxial growth processes. Since the heating efficiency of hybrid magnetic nanoparticles often relies on the exchange-interaction between their components, we discuss various interface-phenomena that are responsible for their magnetic properties. Finally, followed by a brief comment on future directions in the field, we outline recent advances on multifunctional nanoparticles that can boost the heating power with light and combine heating and temperature sensing in a single nanomaterial.
Fil: Lavorato, Gabriel Carlos. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Das, Raja. Phenikaa Research And Technology Institute; Vietnam. Phenikaa University; Vietnam
Fil: Alonso Masa, Javier. Universidad de Cantabria; España
Fil: Phan, Manh Huong. University of South Florida; Estados Unidos
Fil: Srikanth, Hariharan. University of South Florida; Estados Unidos
Materia
MAGNETIC NANOPARTICLES
HYBRID NANOPARTICLES
CORE/SHELL NANOPARTICLES
HEATING EFFICIENCY
MAGNETIC HYPERTHERMIA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/171659

id CONICETDig_f3d48d58ce105675e75ca23f42a10d73
oai_identifier_str oai:ri.conicet.gov.ar:11336/171659
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applicationsLavorato, Gabriel CarlosDas, RajaAlonso Masa, JavierPhan, Manh HuongSrikanth, HariharanMAGNETIC NANOPARTICLESHYBRID NANOPARTICLESCORE/SHELL NANOPARTICLESHEATING EFFICIENCYMAGNETIC HYPERTHERMIAhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Heating at the nanoscale is the basis of several biomedical applications, including magnetic hyperthermia therapies and heat-triggered drug delivery. The combination of multiple inorganic materials in hybrid magnetic nanoparticles provides versatile platforms to achieve an efficient heat delivery upon different external stimuli or to get an optical feedback during the process. However, the successful design and application of these nanomaterials usually require intricate synthesis routes and their magnetic response is still not fully understood. In this review we give an overview of the novel systems reported in the last few years, which have been mostly obtained by organic phase-based synthesis and epitaxial growth processes. Since the heating efficiency of hybrid magnetic nanoparticles often relies on the exchange-interaction between their components, we discuss various interface-phenomena that are responsible for their magnetic properties. Finally, followed by a brief comment on future directions in the field, we outline recent advances on multifunctional nanoparticles that can boost the heating power with light and combine heating and temperature sensing in a single nanomaterial.Fil: Lavorato, Gabriel Carlos. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Das, Raja. Phenikaa Research And Technology Institute; Vietnam. Phenikaa University; VietnamFil: Alonso Masa, Javier. Universidad de Cantabria; EspañaFil: Phan, Manh Huong. University of South Florida; Estados UnidosFil: Srikanth, Hariharan. University of South Florida; Estados UnidosRoyal Society of Chemistry2021-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/171659Lavorato, Gabriel Carlos; Das, Raja; Alonso Masa, Javier; Phan, Manh Huong; Srikanth, Hariharan; Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications; Royal Society of Chemistry; Nanoscale Advances; 3; 4; 2-2021; 867-8882516-0230CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/d0na00828ainfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2021/NA/D0NA00828Ainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:29Zoai:ri.conicet.gov.ar:11336/171659instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:29.567CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications
title Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications
spellingShingle Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications
Lavorato, Gabriel Carlos
MAGNETIC NANOPARTICLES
HYBRID NANOPARTICLES
CORE/SHELL NANOPARTICLES
HEATING EFFICIENCY
MAGNETIC HYPERTHERMIA
title_short Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications
title_full Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications
title_fullStr Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications
title_full_unstemmed Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications
title_sort Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications
dc.creator.none.fl_str_mv Lavorato, Gabriel Carlos
Das, Raja
Alonso Masa, Javier
Phan, Manh Huong
Srikanth, Hariharan
author Lavorato, Gabriel Carlos
author_facet Lavorato, Gabriel Carlos
Das, Raja
Alonso Masa, Javier
Phan, Manh Huong
Srikanth, Hariharan
author_role author
author2 Das, Raja
Alonso Masa, Javier
Phan, Manh Huong
Srikanth, Hariharan
author2_role author
author
author
author
dc.subject.none.fl_str_mv MAGNETIC NANOPARTICLES
HYBRID NANOPARTICLES
CORE/SHELL NANOPARTICLES
HEATING EFFICIENCY
MAGNETIC HYPERTHERMIA
topic MAGNETIC NANOPARTICLES
HYBRID NANOPARTICLES
CORE/SHELL NANOPARTICLES
HEATING EFFICIENCY
MAGNETIC HYPERTHERMIA
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Heating at the nanoscale is the basis of several biomedical applications, including magnetic hyperthermia therapies and heat-triggered drug delivery. The combination of multiple inorganic materials in hybrid magnetic nanoparticles provides versatile platforms to achieve an efficient heat delivery upon different external stimuli or to get an optical feedback during the process. However, the successful design and application of these nanomaterials usually require intricate synthesis routes and their magnetic response is still not fully understood. In this review we give an overview of the novel systems reported in the last few years, which have been mostly obtained by organic phase-based synthesis and epitaxial growth processes. Since the heating efficiency of hybrid magnetic nanoparticles often relies on the exchange-interaction between their components, we discuss various interface-phenomena that are responsible for their magnetic properties. Finally, followed by a brief comment on future directions in the field, we outline recent advances on multifunctional nanoparticles that can boost the heating power with light and combine heating and temperature sensing in a single nanomaterial.
Fil: Lavorato, Gabriel Carlos. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Das, Raja. Phenikaa Research And Technology Institute; Vietnam. Phenikaa University; Vietnam
Fil: Alonso Masa, Javier. Universidad de Cantabria; España
Fil: Phan, Manh Huong. University of South Florida; Estados Unidos
Fil: Srikanth, Hariharan. University of South Florida; Estados Unidos
description Heating at the nanoscale is the basis of several biomedical applications, including magnetic hyperthermia therapies and heat-triggered drug delivery. The combination of multiple inorganic materials in hybrid magnetic nanoparticles provides versatile platforms to achieve an efficient heat delivery upon different external stimuli or to get an optical feedback during the process. However, the successful design and application of these nanomaterials usually require intricate synthesis routes and their magnetic response is still not fully understood. In this review we give an overview of the novel systems reported in the last few years, which have been mostly obtained by organic phase-based synthesis and epitaxial growth processes. Since the heating efficiency of hybrid magnetic nanoparticles often relies on the exchange-interaction between their components, we discuss various interface-phenomena that are responsible for their magnetic properties. Finally, followed by a brief comment on future directions in the field, we outline recent advances on multifunctional nanoparticles that can boost the heating power with light and combine heating and temperature sensing in a single nanomaterial.
publishDate 2021
dc.date.none.fl_str_mv 2021-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/171659
Lavorato, Gabriel Carlos; Das, Raja; Alonso Masa, Javier; Phan, Manh Huong; Srikanth, Hariharan; Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications; Royal Society of Chemistry; Nanoscale Advances; 3; 4; 2-2021; 867-888
2516-0230
CONICET Digital
CONICET
url http://hdl.handle.net/11336/171659
identifier_str_mv Lavorato, Gabriel Carlos; Das, Raja; Alonso Masa, Javier; Phan, Manh Huong; Srikanth, Hariharan; Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications; Royal Society of Chemistry; Nanoscale Advances; 3; 4; 2-2021; 867-888
2516-0230
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/d0na00828a
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2021/NA/D0NA00828A
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269960855879680
score 13.13397