Gravity Currents from Instantaneous Sources Down a Slope

Autores
Dai, Albert; Ozdemir, C. E.; Cantero, Mariano Ignacio; Balachandar, S.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Gravity currents from instantaneous sources down a slope were modeled with classic thermal theory, which has formed the basis for many subsequent studies. Considering entrainment of ambient fluid and conservation of total buoyancy, thermal theory predicted the height, length, and velocity of the gravity current head. In this study, the problem with direct numerical simulations was re-investigated, and the results compared with thermal theory. The predictions based on thermal theory are shown to be appropriate only for the acceleration phase, not for the entire gravity current motion. In particular, for the current head forms on a 10° slope produced from an instantaneous buoyancy source, the contained buoyancy in the head is approximately 58% of the total buoyancy at most and is not conserved during the motion as assumed in thermal theory. In the deceleration phase, the height and aspect ratio of the head and the buoyancy contained within it may all decrease with downslope distance. Thermal theory relies on the increase in the mass of the current head through entrainment as the major mechanism for deceleration and, therefore, tends to underpredict the front velocity in the deceleration phase.
Fil: Dai, Albert. Tamkang University; China
Fil: Ozdemir, C. E.. University of Delaware; Estados Unidos
Fil: Cantero, Mariano Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Fil: Balachandar, S.. University of Florida; Estados Unidos
Materia
DNS
DENSITY CURRENTS
STRATIFIED FLOWS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/269407

id CONICETDig_f3425f7cb6e6e557536a815a5d84ba6f
oai_identifier_str oai:ri.conicet.gov.ar:11336/269407
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Gravity Currents from Instantaneous Sources Down a SlopeDai, AlbertOzdemir, C. E.Cantero, Mariano IgnacioBalachandar, S.DNSDENSITY CURRENTSSTRATIFIED FLOWShttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Gravity currents from instantaneous sources down a slope were modeled with classic thermal theory, which has formed the basis for many subsequent studies. Considering entrainment of ambient fluid and conservation of total buoyancy, thermal theory predicted the height, length, and velocity of the gravity current head. In this study, the problem with direct numerical simulations was re-investigated, and the results compared with thermal theory. The predictions based on thermal theory are shown to be appropriate only for the acceleration phase, not for the entire gravity current motion. In particular, for the current head forms on a 10° slope produced from an instantaneous buoyancy source, the contained buoyancy in the head is approximately 58% of the total buoyancy at most and is not conserved during the motion as assumed in thermal theory. In the deceleration phase, the height and aspect ratio of the head and the buoyancy contained within it may all decrease with downslope distance. Thermal theory relies on the increase in the mass of the current head through entrainment as the major mechanism for deceleration and, therefore, tends to underpredict the front velocity in the deceleration phase.Fil: Dai, Albert. Tamkang University; ChinaFil: Ozdemir, C. E.. University of Delaware; Estados UnidosFil: Cantero, Mariano Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Balachandar, S.. University of Florida; Estados UnidosAmerican Society of Civil Engineers2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/269407Dai, Albert; Ozdemir, C. E.; Cantero, Mariano Ignacio; Balachandar, S.; Gravity Currents from Instantaneous Sources Down a Slope; American Society of Civil Engineers; Journal of Hydraulic Engineering; 138; 3; 3-2012; 237-2460733-9429CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1061/(ASCE)HY.1943-7900.0000500info:eu-repo/semantics/altIdentifier/url/https://ascelibrary.org/doi/10.1061/%28ASCE%29HY.1943-7900.0000500#:~:text=Gravity%20currents%20from%20instantaneous%20sources%20down%20a%20slope%20were%20modeled,of%20the%20gravity%20current%20head.info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:59Zoai:ri.conicet.gov.ar:11336/269407instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:00.015CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Gravity Currents from Instantaneous Sources Down a Slope
title Gravity Currents from Instantaneous Sources Down a Slope
spellingShingle Gravity Currents from Instantaneous Sources Down a Slope
Dai, Albert
DNS
DENSITY CURRENTS
STRATIFIED FLOWS
title_short Gravity Currents from Instantaneous Sources Down a Slope
title_full Gravity Currents from Instantaneous Sources Down a Slope
title_fullStr Gravity Currents from Instantaneous Sources Down a Slope
title_full_unstemmed Gravity Currents from Instantaneous Sources Down a Slope
title_sort Gravity Currents from Instantaneous Sources Down a Slope
dc.creator.none.fl_str_mv Dai, Albert
Ozdemir, C. E.
Cantero, Mariano Ignacio
Balachandar, S.
author Dai, Albert
author_facet Dai, Albert
Ozdemir, C. E.
Cantero, Mariano Ignacio
Balachandar, S.
author_role author
author2 Ozdemir, C. E.
Cantero, Mariano Ignacio
Balachandar, S.
author2_role author
author
author
dc.subject.none.fl_str_mv DNS
DENSITY CURRENTS
STRATIFIED FLOWS
topic DNS
DENSITY CURRENTS
STRATIFIED FLOWS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Gravity currents from instantaneous sources down a slope were modeled with classic thermal theory, which has formed the basis for many subsequent studies. Considering entrainment of ambient fluid and conservation of total buoyancy, thermal theory predicted the height, length, and velocity of the gravity current head. In this study, the problem with direct numerical simulations was re-investigated, and the results compared with thermal theory. The predictions based on thermal theory are shown to be appropriate only for the acceleration phase, not for the entire gravity current motion. In particular, for the current head forms on a 10° slope produced from an instantaneous buoyancy source, the contained buoyancy in the head is approximately 58% of the total buoyancy at most and is not conserved during the motion as assumed in thermal theory. In the deceleration phase, the height and aspect ratio of the head and the buoyancy contained within it may all decrease with downslope distance. Thermal theory relies on the increase in the mass of the current head through entrainment as the major mechanism for deceleration and, therefore, tends to underpredict the front velocity in the deceleration phase.
Fil: Dai, Albert. Tamkang University; China
Fil: Ozdemir, C. E.. University of Delaware; Estados Unidos
Fil: Cantero, Mariano Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Fil: Balachandar, S.. University of Florida; Estados Unidos
description Gravity currents from instantaneous sources down a slope were modeled with classic thermal theory, which has formed the basis for many subsequent studies. Considering entrainment of ambient fluid and conservation of total buoyancy, thermal theory predicted the height, length, and velocity of the gravity current head. In this study, the problem with direct numerical simulations was re-investigated, and the results compared with thermal theory. The predictions based on thermal theory are shown to be appropriate only for the acceleration phase, not for the entire gravity current motion. In particular, for the current head forms on a 10° slope produced from an instantaneous buoyancy source, the contained buoyancy in the head is approximately 58% of the total buoyancy at most and is not conserved during the motion as assumed in thermal theory. In the deceleration phase, the height and aspect ratio of the head and the buoyancy contained within it may all decrease with downslope distance. Thermal theory relies on the increase in the mass of the current head through entrainment as the major mechanism for deceleration and, therefore, tends to underpredict the front velocity in the deceleration phase.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/269407
Dai, Albert; Ozdemir, C. E.; Cantero, Mariano Ignacio; Balachandar, S.; Gravity Currents from Instantaneous Sources Down a Slope; American Society of Civil Engineers; Journal of Hydraulic Engineering; 138; 3; 3-2012; 237-246
0733-9429
CONICET Digital
CONICET
url http://hdl.handle.net/11336/269407
identifier_str_mv Dai, Albert; Ozdemir, C. E.; Cantero, Mariano Ignacio; Balachandar, S.; Gravity Currents from Instantaneous Sources Down a Slope; American Society of Civil Engineers; Journal of Hydraulic Engineering; 138; 3; 3-2012; 237-246
0733-9429
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1061/(ASCE)HY.1943-7900.0000500
info:eu-repo/semantics/altIdentifier/url/https://ascelibrary.org/doi/10.1061/%28ASCE%29HY.1943-7900.0000500#:~:text=Gravity%20currents%20from%20instantaneous%20sources%20down%20a%20slope%20were%20modeled,of%20the%20gravity%20current%20head.
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Society of Civil Engineers
publisher.none.fl_str_mv American Society of Civil Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269194397155328
score 12.885934