Gravity Currents from Instantaneous Sources Down a Slope
- Autores
- Dai, Albert; Ozdemir, C. E.; Cantero, Mariano Ignacio; Balachandar, S.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Gravity currents from instantaneous sources down a slope were modeled with classic thermal theory, which has formed the basis for many subsequent studies. Considering entrainment of ambient fluid and conservation of total buoyancy, thermal theory predicted the height, length, and velocity of the gravity current head. In this study, the problem with direct numerical simulations was re-investigated, and the results compared with thermal theory. The predictions based on thermal theory are shown to be appropriate only for the acceleration phase, not for the entire gravity current motion. In particular, for the current head forms on a 10° slope produced from an instantaneous buoyancy source, the contained buoyancy in the head is approximately 58% of the total buoyancy at most and is not conserved during the motion as assumed in thermal theory. In the deceleration phase, the height and aspect ratio of the head and the buoyancy contained within it may all decrease with downslope distance. Thermal theory relies on the increase in the mass of the current head through entrainment as the major mechanism for deceleration and, therefore, tends to underpredict the front velocity in the deceleration phase.
Fil: Dai, Albert. Tamkang University; China
Fil: Ozdemir, C. E.. University of Delaware; Estados Unidos
Fil: Cantero, Mariano Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Fil: Balachandar, S.. University of Florida; Estados Unidos - Materia
-
DNS
DENSITY CURRENTS
STRATIFIED FLOWS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/269407
Ver los metadatos del registro completo
id |
CONICETDig_f3425f7cb6e6e557536a815a5d84ba6f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/269407 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Gravity Currents from Instantaneous Sources Down a SlopeDai, AlbertOzdemir, C. E.Cantero, Mariano IgnacioBalachandar, S.DNSDENSITY CURRENTSSTRATIFIED FLOWShttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Gravity currents from instantaneous sources down a slope were modeled with classic thermal theory, which has formed the basis for many subsequent studies. Considering entrainment of ambient fluid and conservation of total buoyancy, thermal theory predicted the height, length, and velocity of the gravity current head. In this study, the problem with direct numerical simulations was re-investigated, and the results compared with thermal theory. The predictions based on thermal theory are shown to be appropriate only for the acceleration phase, not for the entire gravity current motion. In particular, for the current head forms on a 10° slope produced from an instantaneous buoyancy source, the contained buoyancy in the head is approximately 58% of the total buoyancy at most and is not conserved during the motion as assumed in thermal theory. In the deceleration phase, the height and aspect ratio of the head and the buoyancy contained within it may all decrease with downslope distance. Thermal theory relies on the increase in the mass of the current head through entrainment as the major mechanism for deceleration and, therefore, tends to underpredict the front velocity in the deceleration phase.Fil: Dai, Albert. Tamkang University; ChinaFil: Ozdemir, C. E.. University of Delaware; Estados UnidosFil: Cantero, Mariano Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Balachandar, S.. University of Florida; Estados UnidosAmerican Society of Civil Engineers2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/269407Dai, Albert; Ozdemir, C. E.; Cantero, Mariano Ignacio; Balachandar, S.; Gravity Currents from Instantaneous Sources Down a Slope; American Society of Civil Engineers; Journal of Hydraulic Engineering; 138; 3; 3-2012; 237-2460733-9429CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1061/(ASCE)HY.1943-7900.0000500info:eu-repo/semantics/altIdentifier/url/https://ascelibrary.org/doi/10.1061/%28ASCE%29HY.1943-7900.0000500#:~:text=Gravity%20currents%20from%20instantaneous%20sources%20down%20a%20slope%20were%20modeled,of%20the%20gravity%20current%20head.info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:59Zoai:ri.conicet.gov.ar:11336/269407instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:00.015CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Gravity Currents from Instantaneous Sources Down a Slope |
title |
Gravity Currents from Instantaneous Sources Down a Slope |
spellingShingle |
Gravity Currents from Instantaneous Sources Down a Slope Dai, Albert DNS DENSITY CURRENTS STRATIFIED FLOWS |
title_short |
Gravity Currents from Instantaneous Sources Down a Slope |
title_full |
Gravity Currents from Instantaneous Sources Down a Slope |
title_fullStr |
Gravity Currents from Instantaneous Sources Down a Slope |
title_full_unstemmed |
Gravity Currents from Instantaneous Sources Down a Slope |
title_sort |
Gravity Currents from Instantaneous Sources Down a Slope |
dc.creator.none.fl_str_mv |
Dai, Albert Ozdemir, C. E. Cantero, Mariano Ignacio Balachandar, S. |
author |
Dai, Albert |
author_facet |
Dai, Albert Ozdemir, C. E. Cantero, Mariano Ignacio Balachandar, S. |
author_role |
author |
author2 |
Ozdemir, C. E. Cantero, Mariano Ignacio Balachandar, S. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DNS DENSITY CURRENTS STRATIFIED FLOWS |
topic |
DNS DENSITY CURRENTS STRATIFIED FLOWS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Gravity currents from instantaneous sources down a slope were modeled with classic thermal theory, which has formed the basis for many subsequent studies. Considering entrainment of ambient fluid and conservation of total buoyancy, thermal theory predicted the height, length, and velocity of the gravity current head. In this study, the problem with direct numerical simulations was re-investigated, and the results compared with thermal theory. The predictions based on thermal theory are shown to be appropriate only for the acceleration phase, not for the entire gravity current motion. In particular, for the current head forms on a 10° slope produced from an instantaneous buoyancy source, the contained buoyancy in the head is approximately 58% of the total buoyancy at most and is not conserved during the motion as assumed in thermal theory. In the deceleration phase, the height and aspect ratio of the head and the buoyancy contained within it may all decrease with downslope distance. Thermal theory relies on the increase in the mass of the current head through entrainment as the major mechanism for deceleration and, therefore, tends to underpredict the front velocity in the deceleration phase. Fil: Dai, Albert. Tamkang University; China Fil: Ozdemir, C. E.. University of Delaware; Estados Unidos Fil: Cantero, Mariano Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina Fil: Balachandar, S.. University of Florida; Estados Unidos |
description |
Gravity currents from instantaneous sources down a slope were modeled with classic thermal theory, which has formed the basis for many subsequent studies. Considering entrainment of ambient fluid and conservation of total buoyancy, thermal theory predicted the height, length, and velocity of the gravity current head. In this study, the problem with direct numerical simulations was re-investigated, and the results compared with thermal theory. The predictions based on thermal theory are shown to be appropriate only for the acceleration phase, not for the entire gravity current motion. In particular, for the current head forms on a 10° slope produced from an instantaneous buoyancy source, the contained buoyancy in the head is approximately 58% of the total buoyancy at most and is not conserved during the motion as assumed in thermal theory. In the deceleration phase, the height and aspect ratio of the head and the buoyancy contained within it may all decrease with downslope distance. Thermal theory relies on the increase in the mass of the current head through entrainment as the major mechanism for deceleration and, therefore, tends to underpredict the front velocity in the deceleration phase. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/269407 Dai, Albert; Ozdemir, C. E.; Cantero, Mariano Ignacio; Balachandar, S.; Gravity Currents from Instantaneous Sources Down a Slope; American Society of Civil Engineers; Journal of Hydraulic Engineering; 138; 3; 3-2012; 237-246 0733-9429 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/269407 |
identifier_str_mv |
Dai, Albert; Ozdemir, C. E.; Cantero, Mariano Ignacio; Balachandar, S.; Gravity Currents from Instantaneous Sources Down a Slope; American Society of Civil Engineers; Journal of Hydraulic Engineering; 138; 3; 3-2012; 237-246 0733-9429 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1061/(ASCE)HY.1943-7900.0000500 info:eu-repo/semantics/altIdentifier/url/https://ascelibrary.org/doi/10.1061/%28ASCE%29HY.1943-7900.0000500#:~:text=Gravity%20currents%20from%20instantaneous%20sources%20down%20a%20slope%20were%20modeled,of%20the%20gravity%20current%20head. |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Society of Civil Engineers |
publisher.none.fl_str_mv |
American Society of Civil Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269194397155328 |
score |
12.885934 |