Rotating planar gravity currents at moderate Rossby numbers: Fully resolved simulations and shallow-water modelling

Autores
Salinas, Jorge Sebastián; Bonometti, Thomas; Ungarish, Marius; Cantero, Mariano Ignacio
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The flow of a gravity current of finite volume and density ρ 1 released from rest from a rectangular lock (of height h 0 ) into an ambient fluid of density ρ 1 (< ρ 1 ) in a system rotating with Ω about the vertical z is investigated by means of fully resolved direct numerical simulations (DNS) and a theoretical model (based on shallow-water and Ekman layer spin-up theories, including mixing). The motion of the dense fluid includes several stages: propagation in the x-direction accompanied by Coriolis acceleration/deflection in the -y-direction, which produces a quasi-steady wedge-shaped structure with significant anticyclonic velocity v, followed by a spin-up reduction of v accompanied by a slow x drift, and oscillation. The theoretical model aims to provide useful insights and approximations concerning the formation time and shape of wedge, and the subsequent spin-up effect. The main parameter is the Coriolis number, C = Ωh 0 /(g′h 0 ) 1/2 , where g′ =(ρ 1 /ρ 0 -1)g is the reduced gravity. The DNS results are focused on a range of relatively small Coriolis numbers, 0.1 ≤ C ≤ 0.25 (i.e. Rossby number Ro = 1=(2C) in the range 2 ≤ Ro ≤ 5), and a large range of Schmidt numbers 1≤Sc<∞; the Reynolds number is large in all cases. The current spreads out in the x direction until it is arrested by the Coriolis effect (in ∼1/4 revolution of the system). A complex motion develops about this state. First, we record oscillations on the inertial time scale 1/Ω (which are a part of the geostrophic adjustment), accompanied by vortices at the interface. Second, we note the spread of the wedge on a significantly longer time scale; this is an indirect spin-up effect - mixing and entrainment reduce the lateral (angular) velocity, which in turn decreases the Coriolis support to the ∂h/∂x slope of the wedge shape. Contrary to non-rotating gravity currents, the front does not remain sharp as it is subject to (i) local stretching along the streamwise direction and (ii) convective mixing due to Kelvin-Helmholtz vortices generated by shear along the spanwise direction and stemming from Coriolis effects. The theoretical model predicts that the length of the wedge scales as C -2/3 (in contrast to the Rossby radius ∈1/C which is relevant for large C; and in contrast to C -1/2 for the axisymmetric lens).
Fil: Salinas, Jorge Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Bonometti, Thomas. Centre National de la Recherche Scientifique; Francia. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse; Francia
Fil: Ungarish, Marius. Technion - Israel Institute of Technology; Israel
Fil: Cantero, Mariano Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Materia
GRAVITY CURRENTS
ROTATING FLOWS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/116767

id CONICETDig_2d4efa3e9c8f2777e302dfd8bf86cb1f
oai_identifier_str oai:ri.conicet.gov.ar:11336/116767
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Rotating planar gravity currents at moderate Rossby numbers: Fully resolved simulations and shallow-water modellingSalinas, Jorge SebastiánBonometti, ThomasUngarish, MariusCantero, Mariano IgnacioGRAVITY CURRENTSROTATING FLOWShttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The flow of a gravity current of finite volume and density ρ 1 released from rest from a rectangular lock (of height h 0 ) into an ambient fluid of density ρ 1 (< ρ 1 ) in a system rotating with Ω about the vertical z is investigated by means of fully resolved direct numerical simulations (DNS) and a theoretical model (based on shallow-water and Ekman layer spin-up theories, including mixing). The motion of the dense fluid includes several stages: propagation in the x-direction accompanied by Coriolis acceleration/deflection in the -y-direction, which produces a quasi-steady wedge-shaped structure with significant anticyclonic velocity v, followed by a spin-up reduction of v accompanied by a slow x drift, and oscillation. The theoretical model aims to provide useful insights and approximations concerning the formation time and shape of wedge, and the subsequent spin-up effect. The main parameter is the Coriolis number, C = Ωh 0 /(g′h 0 ) 1/2 , where g′ =(ρ 1 /ρ 0 -1)g is the reduced gravity. The DNS results are focused on a range of relatively small Coriolis numbers, 0.1 ≤ C ≤ 0.25 (i.e. Rossby number Ro = 1=(2C) in the range 2 ≤ Ro ≤ 5), and a large range of Schmidt numbers 1≤Sc<∞; the Reynolds number is large in all cases. The current spreads out in the x direction until it is arrested by the Coriolis effect (in ∼1/4 revolution of the system). A complex motion develops about this state. First, we record oscillations on the inertial time scale 1/Ω (which are a part of the geostrophic adjustment), accompanied by vortices at the interface. Second, we note the spread of the wedge on a significantly longer time scale; this is an indirect spin-up effect - mixing and entrainment reduce the lateral (angular) velocity, which in turn decreases the Coriolis support to the ∂h/∂x slope of the wedge shape. Contrary to non-rotating gravity currents, the front does not remain sharp as it is subject to (i) local stretching along the streamwise direction and (ii) convective mixing due to Kelvin-Helmholtz vortices generated by shear along the spanwise direction and stemming from Coriolis effects. The theoretical model predicts that the length of the wedge scales as C -2/3 (in contrast to the Rossby radius ∈1/C which is relevant for large C; and in contrast to C -1/2 for the axisymmetric lens).Fil: Salinas, Jorge Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Bonometti, Thomas. Centre National de la Recherche Scientifique; Francia. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse; FranciaFil: Ungarish, Marius. Technion - Israel Institute of Technology; IsraelFil: Cantero, Mariano Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaCambridge University Press2019-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/116767Salinas, Jorge Sebastián; Bonometti, Thomas; Ungarish, Marius; Cantero, Mariano Ignacio; Rotating planar gravity currents at moderate Rossby numbers: Fully resolved simulations and shallow-water modelling; Cambridge University Press; Journal of Fluid Mechanics; 867; 5-2019; 114-1450022-1120CONICET DigitalCONICETengCorregido en https://doi.org/10.1017/jfm.2020.167info:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2019.152info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/rotating-planar-gravity-currents-at-moderate-rossby-numbers-fully-resolved-simulations-and-shallowwater-modelling/D6CAA27FBF035F6199E9C0C19F8F3706info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:14Zoai:ri.conicet.gov.ar:11336/116767instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:14.469CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Rotating planar gravity currents at moderate Rossby numbers: Fully resolved simulations and shallow-water modelling
title Rotating planar gravity currents at moderate Rossby numbers: Fully resolved simulations and shallow-water modelling
spellingShingle Rotating planar gravity currents at moderate Rossby numbers: Fully resolved simulations and shallow-water modelling
Salinas, Jorge Sebastián
GRAVITY CURRENTS
ROTATING FLOWS
title_short Rotating planar gravity currents at moderate Rossby numbers: Fully resolved simulations and shallow-water modelling
title_full Rotating planar gravity currents at moderate Rossby numbers: Fully resolved simulations and shallow-water modelling
title_fullStr Rotating planar gravity currents at moderate Rossby numbers: Fully resolved simulations and shallow-water modelling
title_full_unstemmed Rotating planar gravity currents at moderate Rossby numbers: Fully resolved simulations and shallow-water modelling
title_sort Rotating planar gravity currents at moderate Rossby numbers: Fully resolved simulations and shallow-water modelling
dc.creator.none.fl_str_mv Salinas, Jorge Sebastián
Bonometti, Thomas
Ungarish, Marius
Cantero, Mariano Ignacio
author Salinas, Jorge Sebastián
author_facet Salinas, Jorge Sebastián
Bonometti, Thomas
Ungarish, Marius
Cantero, Mariano Ignacio
author_role author
author2 Bonometti, Thomas
Ungarish, Marius
Cantero, Mariano Ignacio
author2_role author
author
author
dc.subject.none.fl_str_mv GRAVITY CURRENTS
ROTATING FLOWS
topic GRAVITY CURRENTS
ROTATING FLOWS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The flow of a gravity current of finite volume and density ρ 1 released from rest from a rectangular lock (of height h 0 ) into an ambient fluid of density ρ 1 (< ρ 1 ) in a system rotating with Ω about the vertical z is investigated by means of fully resolved direct numerical simulations (DNS) and a theoretical model (based on shallow-water and Ekman layer spin-up theories, including mixing). The motion of the dense fluid includes several stages: propagation in the x-direction accompanied by Coriolis acceleration/deflection in the -y-direction, which produces a quasi-steady wedge-shaped structure with significant anticyclonic velocity v, followed by a spin-up reduction of v accompanied by a slow x drift, and oscillation. The theoretical model aims to provide useful insights and approximations concerning the formation time and shape of wedge, and the subsequent spin-up effect. The main parameter is the Coriolis number, C = Ωh 0 /(g′h 0 ) 1/2 , where g′ =(ρ 1 /ρ 0 -1)g is the reduced gravity. The DNS results are focused on a range of relatively small Coriolis numbers, 0.1 ≤ C ≤ 0.25 (i.e. Rossby number Ro = 1=(2C) in the range 2 ≤ Ro ≤ 5), and a large range of Schmidt numbers 1≤Sc<∞; the Reynolds number is large in all cases. The current spreads out in the x direction until it is arrested by the Coriolis effect (in ∼1/4 revolution of the system). A complex motion develops about this state. First, we record oscillations on the inertial time scale 1/Ω (which are a part of the geostrophic adjustment), accompanied by vortices at the interface. Second, we note the spread of the wedge on a significantly longer time scale; this is an indirect spin-up effect - mixing and entrainment reduce the lateral (angular) velocity, which in turn decreases the Coriolis support to the ∂h/∂x slope of the wedge shape. Contrary to non-rotating gravity currents, the front does not remain sharp as it is subject to (i) local stretching along the streamwise direction and (ii) convective mixing due to Kelvin-Helmholtz vortices generated by shear along the spanwise direction and stemming from Coriolis effects. The theoretical model predicts that the length of the wedge scales as C -2/3 (in contrast to the Rossby radius ∈1/C which is relevant for large C; and in contrast to C -1/2 for the axisymmetric lens).
Fil: Salinas, Jorge Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Bonometti, Thomas. Centre National de la Recherche Scientifique; Francia. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse; Francia
Fil: Ungarish, Marius. Technion - Israel Institute of Technology; Israel
Fil: Cantero, Mariano Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
description The flow of a gravity current of finite volume and density ρ 1 released from rest from a rectangular lock (of height h 0 ) into an ambient fluid of density ρ 1 (< ρ 1 ) in a system rotating with Ω about the vertical z is investigated by means of fully resolved direct numerical simulations (DNS) and a theoretical model (based on shallow-water and Ekman layer spin-up theories, including mixing). The motion of the dense fluid includes several stages: propagation in the x-direction accompanied by Coriolis acceleration/deflection in the -y-direction, which produces a quasi-steady wedge-shaped structure with significant anticyclonic velocity v, followed by a spin-up reduction of v accompanied by a slow x drift, and oscillation. The theoretical model aims to provide useful insights and approximations concerning the formation time and shape of wedge, and the subsequent spin-up effect. The main parameter is the Coriolis number, C = Ωh 0 /(g′h 0 ) 1/2 , where g′ =(ρ 1 /ρ 0 -1)g is the reduced gravity. The DNS results are focused on a range of relatively small Coriolis numbers, 0.1 ≤ C ≤ 0.25 (i.e. Rossby number Ro = 1=(2C) in the range 2 ≤ Ro ≤ 5), and a large range of Schmidt numbers 1≤Sc<∞; the Reynolds number is large in all cases. The current spreads out in the x direction until it is arrested by the Coriolis effect (in ∼1/4 revolution of the system). A complex motion develops about this state. First, we record oscillations on the inertial time scale 1/Ω (which are a part of the geostrophic adjustment), accompanied by vortices at the interface. Second, we note the spread of the wedge on a significantly longer time scale; this is an indirect spin-up effect - mixing and entrainment reduce the lateral (angular) velocity, which in turn decreases the Coriolis support to the ∂h/∂x slope of the wedge shape. Contrary to non-rotating gravity currents, the front does not remain sharp as it is subject to (i) local stretching along the streamwise direction and (ii) convective mixing due to Kelvin-Helmholtz vortices generated by shear along the spanwise direction and stemming from Coriolis effects. The theoretical model predicts that the length of the wedge scales as C -2/3 (in contrast to the Rossby radius ∈1/C which is relevant for large C; and in contrast to C -1/2 for the axisymmetric lens).
publishDate 2019
dc.date.none.fl_str_mv 2019-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/116767
Salinas, Jorge Sebastián; Bonometti, Thomas; Ungarish, Marius; Cantero, Mariano Ignacio; Rotating planar gravity currents at moderate Rossby numbers: Fully resolved simulations and shallow-water modelling; Cambridge University Press; Journal of Fluid Mechanics; 867; 5-2019; 114-145
0022-1120
CONICET Digital
CONICET
url http://hdl.handle.net/11336/116767
identifier_str_mv Salinas, Jorge Sebastián; Bonometti, Thomas; Ungarish, Marius; Cantero, Mariano Ignacio; Rotating planar gravity currents at moderate Rossby numbers: Fully resolved simulations and shallow-water modelling; Cambridge University Press; Journal of Fluid Mechanics; 867; 5-2019; 114-145
0022-1120
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Corregido en https://doi.org/10.1017/jfm.2020.167
info:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2019.152
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/rotating-planar-gravity-currents-at-moderate-rossby-numbers-fully-resolved-simulations-and-shallowwater-modelling/D6CAA27FBF035F6199E9C0C19F8F3706
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269569398341632
score 13.13397