2D Titanium Carbide MXene and Single‐Molecule Fluorescence: Distance‐Dependent Nonradiative Energy Transfer and Leaflet‐Resolved Dye Sensing in Lipid Bilayers

Autores
Manzanares, Lorena; Spurling, Dahnan; Szalai, Alan Marcelo; Schröder, Tim; Büber, Ece; Ferrari, Giovanni; Dagleish, Martin R. J.; Nicolosi, Valeria; Tinnefeld, Philip
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Despite their growing popularity, many fundamental properties and applications of MXene materials remain underexplored. Here, the nonradiative energy transfer properties of 2D titanium carbide MXene are investigated and their application in single-molecule biosensing is explored for the first time. DNA origami positioners are used for single dye placement immobilized by a specific chemistry based on glycine-MXene interactions, allowing precise control of their orientation on the surface. Each DNA origami structure carries a single dye molecule at predetermined heights. Single-molecule fluorescence confocal microscopy reveals that energy transfer of an organic emitter (ATTO 542) on transparent thin films made of spincast Ti3C2Tx flakes follows a cubic distance dependence, where 50% of energy transfer efficiency is reached at 2.7 nm (d0). MXenes are applied as short-distance spectroscopic nanorulers, determining z distances of dye-labeled supported lipid bilayers fused on MXene’s hydrophilic surface. Hydration layer (2.1 nm) and lipid bilayer thickness (4.5 nm) values that agree with the literature are obtained. These results highlight titanium carbide MXenes as promising substrates for single-molecule biosensing of ultrathin assemblies, owing to their sensitivity near the interface, a distance regime that is typically inaccessible to other energy transfer tools.
Fil: Manzanares, Lorena. Ludwig Maximilians Universitat; Alemania
Fil: Spurling, Dahnan. Universidad de Dublin; Irlanda
Fil: Szalai, Alan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Ludwig Maximilians Universitat; Alemania
Fil: Schröder, Tim. Ludwig Maximilians Universitat; Alemania
Fil: Büber, Ece. Ludwig Maximilians Universitat; Alemania
Fil: Ferrari, Giovanni. Ludwig Maximilians Universitat; Alemania
Fil: Dagleish, Martin R. J.. Ludwig Maximilians Universitat; Alemania
Fil: Nicolosi, Valeria. Universidad de Dublin; Irlanda
Fil: Tinnefeld, Philip. Ludwig Maximilians Universitat; Alemania
Materia
MXENE
ENERGY TRANSFER
SINGLE-MOLECULE
2D MATERIALS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/265898

id CONICETDig_f1a2b9c19b2e5b91cd1cfe1a03facaac
oai_identifier_str oai:ri.conicet.gov.ar:11336/265898
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling 2D Titanium Carbide MXene and Single‐Molecule Fluorescence: Distance‐Dependent Nonradiative Energy Transfer and Leaflet‐Resolved Dye Sensing in Lipid BilayersManzanares, LorenaSpurling, DahnanSzalai, Alan MarceloSchröder, TimBüber, EceFerrari, GiovanniDagleish, Martin R. J.Nicolosi, ValeriaTinnefeld, PhilipMXENEENERGY TRANSFERSINGLE-MOLECULE2D MATERIALShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Despite their growing popularity, many fundamental properties and applications of MXene materials remain underexplored. Here, the nonradiative energy transfer properties of 2D titanium carbide MXene are investigated and their application in single-molecule biosensing is explored for the first time. DNA origami positioners are used for single dye placement immobilized by a specific chemistry based on glycine-MXene interactions, allowing precise control of their orientation on the surface. Each DNA origami structure carries a single dye molecule at predetermined heights. Single-molecule fluorescence confocal microscopy reveals that energy transfer of an organic emitter (ATTO 542) on transparent thin films made of spincast Ti3C2Tx flakes follows a cubic distance dependence, where 50% of energy transfer efficiency is reached at 2.7 nm (d0). MXenes are applied as short-distance spectroscopic nanorulers, determining z distances of dye-labeled supported lipid bilayers fused on MXene’s hydrophilic surface. Hydration layer (2.1 nm) and lipid bilayer thickness (4.5 nm) values that agree with the literature are obtained. These results highlight titanium carbide MXenes as promising substrates for single-molecule biosensing of ultrathin assemblies, owing to their sensitivity near the interface, a distance regime that is typically inaccessible to other energy transfer tools.Fil: Manzanares, Lorena. Ludwig Maximilians Universitat; AlemaniaFil: Spurling, Dahnan. Universidad de Dublin; IrlandaFil: Szalai, Alan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Ludwig Maximilians Universitat; AlemaniaFil: Schröder, Tim. Ludwig Maximilians Universitat; AlemaniaFil: Büber, Ece. Ludwig Maximilians Universitat; AlemaniaFil: Ferrari, Giovanni. Ludwig Maximilians Universitat; AlemaniaFil: Dagleish, Martin R. J.. Ludwig Maximilians Universitat; AlemaniaFil: Nicolosi, Valeria. Universidad de Dublin; IrlandaFil: Tinnefeld, Philip. Ludwig Maximilians Universitat; AlemaniaWiley VCH Verlag2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265898Manzanares, Lorena; Spurling, Dahnan; Szalai, Alan Marcelo; Schröder, Tim; Büber, Ece; et al.; 2D Titanium Carbide MXene and Single‐Molecule Fluorescence: Distance‐Dependent Nonradiative Energy Transfer and Leaflet‐Resolved Dye Sensing in Lipid Bilayers; Wiley VCH Verlag; Advanced Materials; 36; 49; 10-2024; 1-90935-9648CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/adma.202411724info:eu-repo/semantics/altIdentifier/doi/10.1002/adma.202411724info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:14:38Zoai:ri.conicet.gov.ar:11336/265898instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:14:38.656CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv 2D Titanium Carbide MXene and Single‐Molecule Fluorescence: Distance‐Dependent Nonradiative Energy Transfer and Leaflet‐Resolved Dye Sensing in Lipid Bilayers
title 2D Titanium Carbide MXene and Single‐Molecule Fluorescence: Distance‐Dependent Nonradiative Energy Transfer and Leaflet‐Resolved Dye Sensing in Lipid Bilayers
spellingShingle 2D Titanium Carbide MXene and Single‐Molecule Fluorescence: Distance‐Dependent Nonradiative Energy Transfer and Leaflet‐Resolved Dye Sensing in Lipid Bilayers
Manzanares, Lorena
MXENE
ENERGY TRANSFER
SINGLE-MOLECULE
2D MATERIALS
title_short 2D Titanium Carbide MXene and Single‐Molecule Fluorescence: Distance‐Dependent Nonradiative Energy Transfer and Leaflet‐Resolved Dye Sensing in Lipid Bilayers
title_full 2D Titanium Carbide MXene and Single‐Molecule Fluorescence: Distance‐Dependent Nonradiative Energy Transfer and Leaflet‐Resolved Dye Sensing in Lipid Bilayers
title_fullStr 2D Titanium Carbide MXene and Single‐Molecule Fluorescence: Distance‐Dependent Nonradiative Energy Transfer and Leaflet‐Resolved Dye Sensing in Lipid Bilayers
title_full_unstemmed 2D Titanium Carbide MXene and Single‐Molecule Fluorescence: Distance‐Dependent Nonradiative Energy Transfer and Leaflet‐Resolved Dye Sensing in Lipid Bilayers
title_sort 2D Titanium Carbide MXene and Single‐Molecule Fluorescence: Distance‐Dependent Nonradiative Energy Transfer and Leaflet‐Resolved Dye Sensing in Lipid Bilayers
dc.creator.none.fl_str_mv Manzanares, Lorena
Spurling, Dahnan
Szalai, Alan Marcelo
Schröder, Tim
Büber, Ece
Ferrari, Giovanni
Dagleish, Martin R. J.
Nicolosi, Valeria
Tinnefeld, Philip
author Manzanares, Lorena
author_facet Manzanares, Lorena
Spurling, Dahnan
Szalai, Alan Marcelo
Schröder, Tim
Büber, Ece
Ferrari, Giovanni
Dagleish, Martin R. J.
Nicolosi, Valeria
Tinnefeld, Philip
author_role author
author2 Spurling, Dahnan
Szalai, Alan Marcelo
Schröder, Tim
Büber, Ece
Ferrari, Giovanni
Dagleish, Martin R. J.
Nicolosi, Valeria
Tinnefeld, Philip
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv MXENE
ENERGY TRANSFER
SINGLE-MOLECULE
2D MATERIALS
topic MXENE
ENERGY TRANSFER
SINGLE-MOLECULE
2D MATERIALS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Despite their growing popularity, many fundamental properties and applications of MXene materials remain underexplored. Here, the nonradiative energy transfer properties of 2D titanium carbide MXene are investigated and their application in single-molecule biosensing is explored for the first time. DNA origami positioners are used for single dye placement immobilized by a specific chemistry based on glycine-MXene interactions, allowing precise control of their orientation on the surface. Each DNA origami structure carries a single dye molecule at predetermined heights. Single-molecule fluorescence confocal microscopy reveals that energy transfer of an organic emitter (ATTO 542) on transparent thin films made of spincast Ti3C2Tx flakes follows a cubic distance dependence, where 50% of energy transfer efficiency is reached at 2.7 nm (d0). MXenes are applied as short-distance spectroscopic nanorulers, determining z distances of dye-labeled supported lipid bilayers fused on MXene’s hydrophilic surface. Hydration layer (2.1 nm) and lipid bilayer thickness (4.5 nm) values that agree with the literature are obtained. These results highlight titanium carbide MXenes as promising substrates for single-molecule biosensing of ultrathin assemblies, owing to their sensitivity near the interface, a distance regime that is typically inaccessible to other energy transfer tools.
Fil: Manzanares, Lorena. Ludwig Maximilians Universitat; Alemania
Fil: Spurling, Dahnan. Universidad de Dublin; Irlanda
Fil: Szalai, Alan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Ludwig Maximilians Universitat; Alemania
Fil: Schröder, Tim. Ludwig Maximilians Universitat; Alemania
Fil: Büber, Ece. Ludwig Maximilians Universitat; Alemania
Fil: Ferrari, Giovanni. Ludwig Maximilians Universitat; Alemania
Fil: Dagleish, Martin R. J.. Ludwig Maximilians Universitat; Alemania
Fil: Nicolosi, Valeria. Universidad de Dublin; Irlanda
Fil: Tinnefeld, Philip. Ludwig Maximilians Universitat; Alemania
description Despite their growing popularity, many fundamental properties and applications of MXene materials remain underexplored. Here, the nonradiative energy transfer properties of 2D titanium carbide MXene are investigated and their application in single-molecule biosensing is explored for the first time. DNA origami positioners are used for single dye placement immobilized by a specific chemistry based on glycine-MXene interactions, allowing precise control of their orientation on the surface. Each DNA origami structure carries a single dye molecule at predetermined heights. Single-molecule fluorescence confocal microscopy reveals that energy transfer of an organic emitter (ATTO 542) on transparent thin films made of spincast Ti3C2Tx flakes follows a cubic distance dependence, where 50% of energy transfer efficiency is reached at 2.7 nm (d0). MXenes are applied as short-distance spectroscopic nanorulers, determining z distances of dye-labeled supported lipid bilayers fused on MXene’s hydrophilic surface. Hydration layer (2.1 nm) and lipid bilayer thickness (4.5 nm) values that agree with the literature are obtained. These results highlight titanium carbide MXenes as promising substrates for single-molecule biosensing of ultrathin assemblies, owing to their sensitivity near the interface, a distance regime that is typically inaccessible to other energy transfer tools.
publishDate 2024
dc.date.none.fl_str_mv 2024-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/265898
Manzanares, Lorena; Spurling, Dahnan; Szalai, Alan Marcelo; Schröder, Tim; Büber, Ece; et al.; 2D Titanium Carbide MXene and Single‐Molecule Fluorescence: Distance‐Dependent Nonradiative Energy Transfer and Leaflet‐Resolved Dye Sensing in Lipid Bilayers; Wiley VCH Verlag; Advanced Materials; 36; 49; 10-2024; 1-9
0935-9648
CONICET Digital
CONICET
url http://hdl.handle.net/11336/265898
identifier_str_mv Manzanares, Lorena; Spurling, Dahnan; Szalai, Alan Marcelo; Schröder, Tim; Büber, Ece; et al.; 2D Titanium Carbide MXene and Single‐Molecule Fluorescence: Distance‐Dependent Nonradiative Energy Transfer and Leaflet‐Resolved Dye Sensing in Lipid Bilayers; Wiley VCH Verlag; Advanced Materials; 36; 49; 10-2024; 1-9
0935-9648
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/adma.202411724
info:eu-repo/semantics/altIdentifier/doi/10.1002/adma.202411724
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley VCH Verlag
publisher.none.fl_str_mv Wiley VCH Verlag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083293653499904
score 13.22299