The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains
- Autores
- de la Torre, Alejandro; Pessano, H.; Hierro, Rodrigo Federico; Santos, J. R.; Llamedo Soria, Pablo Martin; Alexander, Pedro Manfredo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- On the basis of 180 storms which took place between 2004 and 2011 over the province of Mendoza (Argentina) near to the Andes Range at southern mid-latitudes, we consider those registered in the northern and central crop areas (oases). The regions affected by these storms are currently protected by an operational hail mitigation project. Differences with previously reported storms detected in the southern oasis are highlighted. Mendoza is a semiarid region situated roughly between 32S and 37S at the east of the highest Andes top. It forms a natural laboratory where different sources of gravity waves, mainly mountain waves, occur. In this work, we analyze the effects of flow over topography generating mountain waves and favoring deep convection. The joint occurrence of storms with hail production and mountain waves is determined from mesoscale numerical simulations, radar and radiosounding data. In particular, two case studies that properly represent diverse structures observed in the region are considered in detail. A continuous wavelet transform is applied to each variable and profile to detect the main oscillation modes present. Simulated temperature profiles are validated and compared with radiosounding data. Each first radar echo, time and location are determined. The necessary energy to lift a parcel to its level of free convection is tested from the Convective Available Potential Energy and Convection Inhibition. This last parameter is compared against the mountain waves' vertical kinetic energy. The time evolution and vertical structure of vertical velocity and equivalent potential temperature suggest in both cases that the detected mountain wave amplitudes are able to provide the necessary energy to lift the air parcel and trigger convection. A simple conceptual scheme linking the dynamical factors taking place before and during storm development is proposed.
Fil: de la Torre, Alejandro. Universidad Austral. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pessano, H.. Universidad Tecnologica Nacional. Facultad Regional San Rafael; Argentina
Fil: Hierro, Rodrigo Federico. Universidad Austral. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Santos, J. R.. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Llamedo Soria, Pablo Martin. Universidad Austral. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Alexander, Pedro Manfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Mountain waves
Storms
Andes
Mendoza - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18035
Ver los metadatos del registro completo
id |
CONICETDig_f0b89eee666dc6cedbb8bdd6157dc2ba |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18035 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountainsde la Torre, AlejandroPessano, H.Hierro, Rodrigo FedericoSantos, J. R.Llamedo Soria, Pablo MartinAlexander, Pedro ManfredoMountain wavesStormsAndesMendozahttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1On the basis of 180 storms which took place between 2004 and 2011 over the province of Mendoza (Argentina) near to the Andes Range at southern mid-latitudes, we consider those registered in the northern and central crop areas (oases). The regions affected by these storms are currently protected by an operational hail mitigation project. Differences with previously reported storms detected in the southern oasis are highlighted. Mendoza is a semiarid region situated roughly between 32S and 37S at the east of the highest Andes top. It forms a natural laboratory where different sources of gravity waves, mainly mountain waves, occur. In this work, we analyze the effects of flow over topography generating mountain waves and favoring deep convection. The joint occurrence of storms with hail production and mountain waves is determined from mesoscale numerical simulations, radar and radiosounding data. In particular, two case studies that properly represent diverse structures observed in the region are considered in detail. A continuous wavelet transform is applied to each variable and profile to detect the main oscillation modes present. Simulated temperature profiles are validated and compared with radiosounding data. Each first radar echo, time and location are determined. The necessary energy to lift a parcel to its level of free convection is tested from the Convective Available Potential Energy and Convection Inhibition. This last parameter is compared against the mountain waves' vertical kinetic energy. The time evolution and vertical structure of vertical velocity and equivalent potential temperature suggest in both cases that the detected mountain wave amplitudes are able to provide the necessary energy to lift the air parcel and trigger convection. A simple conceptual scheme linking the dynamical factors taking place before and during storm development is proposed.Fil: de la Torre, Alejandro. Universidad Austral. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pessano, H.. Universidad Tecnologica Nacional. Facultad Regional San Rafael; ArgentinaFil: Hierro, Rodrigo Federico. Universidad Austral. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Santos, J. R.. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Llamedo Soria, Pablo Martin. Universidad Austral. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alexander, Pedro Manfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18035de la Torre, Alejandro; Pessano, H.; Hierro, Rodrigo Federico; Santos, J. R.; Llamedo Soria, Pablo Martin; et al.; The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains; Elsevier Science; Atmospheric Research; 156; 4-2015; 91-1010169-8095enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosres.2014.12.020info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169809515000095?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:52Zoai:ri.conicet.gov.ar:11336/18035instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:52.729CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains |
title |
The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains |
spellingShingle |
The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains de la Torre, Alejandro Mountain waves Storms Andes Mendoza |
title_short |
The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains |
title_full |
The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains |
title_fullStr |
The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains |
title_full_unstemmed |
The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains |
title_sort |
The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains |
dc.creator.none.fl_str_mv |
de la Torre, Alejandro Pessano, H. Hierro, Rodrigo Federico Santos, J. R. Llamedo Soria, Pablo Martin Alexander, Pedro Manfredo |
author |
de la Torre, Alejandro |
author_facet |
de la Torre, Alejandro Pessano, H. Hierro, Rodrigo Federico Santos, J. R. Llamedo Soria, Pablo Martin Alexander, Pedro Manfredo |
author_role |
author |
author2 |
Pessano, H. Hierro, Rodrigo Federico Santos, J. R. Llamedo Soria, Pablo Martin Alexander, Pedro Manfredo |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Mountain waves Storms Andes Mendoza |
topic |
Mountain waves Storms Andes Mendoza |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
On the basis of 180 storms which took place between 2004 and 2011 over the province of Mendoza (Argentina) near to the Andes Range at southern mid-latitudes, we consider those registered in the northern and central crop areas (oases). The regions affected by these storms are currently protected by an operational hail mitigation project. Differences with previously reported storms detected in the southern oasis are highlighted. Mendoza is a semiarid region situated roughly between 32S and 37S at the east of the highest Andes top. It forms a natural laboratory where different sources of gravity waves, mainly mountain waves, occur. In this work, we analyze the effects of flow over topography generating mountain waves and favoring deep convection. The joint occurrence of storms with hail production and mountain waves is determined from mesoscale numerical simulations, radar and radiosounding data. In particular, two case studies that properly represent diverse structures observed in the region are considered in detail. A continuous wavelet transform is applied to each variable and profile to detect the main oscillation modes present. Simulated temperature profiles are validated and compared with radiosounding data. Each first radar echo, time and location are determined. The necessary energy to lift a parcel to its level of free convection is tested from the Convective Available Potential Energy and Convection Inhibition. This last parameter is compared against the mountain waves' vertical kinetic energy. The time evolution and vertical structure of vertical velocity and equivalent potential temperature suggest in both cases that the detected mountain wave amplitudes are able to provide the necessary energy to lift the air parcel and trigger convection. A simple conceptual scheme linking the dynamical factors taking place before and during storm development is proposed. Fil: de la Torre, Alejandro. Universidad Austral. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pessano, H.. Universidad Tecnologica Nacional. Facultad Regional San Rafael; Argentina Fil: Hierro, Rodrigo Federico. Universidad Austral. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Santos, J. R.. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Llamedo Soria, Pablo Martin. Universidad Austral. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Alexander, Pedro Manfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
On the basis of 180 storms which took place between 2004 and 2011 over the province of Mendoza (Argentina) near to the Andes Range at southern mid-latitudes, we consider those registered in the northern and central crop areas (oases). The regions affected by these storms are currently protected by an operational hail mitigation project. Differences with previously reported storms detected in the southern oasis are highlighted. Mendoza is a semiarid region situated roughly between 32S and 37S at the east of the highest Andes top. It forms a natural laboratory where different sources of gravity waves, mainly mountain waves, occur. In this work, we analyze the effects of flow over topography generating mountain waves and favoring deep convection. The joint occurrence of storms with hail production and mountain waves is determined from mesoscale numerical simulations, radar and radiosounding data. In particular, two case studies that properly represent diverse structures observed in the region are considered in detail. A continuous wavelet transform is applied to each variable and profile to detect the main oscillation modes present. Simulated temperature profiles are validated and compared with radiosounding data. Each first radar echo, time and location are determined. The necessary energy to lift a parcel to its level of free convection is tested from the Convective Available Potential Energy and Convection Inhibition. This last parameter is compared against the mountain waves' vertical kinetic energy. The time evolution and vertical structure of vertical velocity and equivalent potential temperature suggest in both cases that the detected mountain wave amplitudes are able to provide the necessary energy to lift the air parcel and trigger convection. A simple conceptual scheme linking the dynamical factors taking place before and during storm development is proposed. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18035 de la Torre, Alejandro; Pessano, H.; Hierro, Rodrigo Federico; Santos, J. R.; Llamedo Soria, Pablo Martin; et al.; The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains; Elsevier Science; Atmospheric Research; 156; 4-2015; 91-101 0169-8095 |
url |
http://hdl.handle.net/11336/18035 |
identifier_str_mv |
de la Torre, Alejandro; Pessano, H.; Hierro, Rodrigo Federico; Santos, J. R.; Llamedo Soria, Pablo Martin; et al.; The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains; Elsevier Science; Atmospheric Research; 156; 4-2015; 91-101 0169-8095 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosres.2014.12.020 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169809515000095?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614293349203968 |
score |
13.070432 |