Orographic effects related to deep convection events over the Andes region
- Autores
- Hierro, Rodrigo Federico; Pessano, H.; Llamedo Soria, Pablo Martin; de la Torre, Alejandro; Alexander, Pedro Manfredo; Odiard, A.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, we analyze a set of 39 storms which took place between 2006 and 2011 over the South of Mendoza, Argentina. This is a semiarid region situated at mid-latitudes (roughly between 32S and 36S) at the east of the highest Andes tops which constitutes a natural laboratory where diverse sources of gravity waves usually take place. We consider a cultivated subregion near San Rafael district, where every summer a systematic generation of deep convection events is registered. We propose that the lift mechanism required to raise a parcel to its level of free convection is partially supplied by mountain waves (MWs). From Weather Research and Forecasting (WRF) mesoscale model simulations and radar network data, we calculate the evolution of convective available potential energy and convective inhibition indices during the development of each storm. Global Final Analysis is used to construct initial and boundary conditions. Convective inhibition indices are compared with the vertical kinetic energy capable of being supplied by the MWs, in order to provide a rough estimation of this possible triggering mechanism. Vertical velocity is chosen as an appropriate dynamical variable to evidence the presence of MWs in the vicinity of each detected first radar echo. After establishing a criterion based on a previous work to represent MWs, the 39 storms are split into two subsets: with and without the presence of MWs. 12 cases with considerable MWs amplitude are retained and considered. Radar data differences between the two samples are analyzed and the simulated MWs are characterized.
Fil: Hierro, Rodrigo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería; Argentina
Fil: Pessano, H.. Universidad Tecnologica Nacional. Facultad Regional San Rafael; Argentina
Fil: Llamedo Soria, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería; Argentina
Fil: de la Torre, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería; Argentina
Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Odiard, A.. Dirección de Agricultura y Contingencias Climáticas; Argentina - Materia
-
ANDES
MENDOZA
MOUNTAIN WAVES
STORMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/85136
Ver los metadatos del registro completo
id |
CONICETDig_4004e58726cae6054517e8e100a807a6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/85136 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Orographic effects related to deep convection events over the Andes regionHierro, Rodrigo FedericoPessano, H.Llamedo Soria, Pablo Martinde la Torre, AlejandroAlexander, Pedro ManfredoOdiard, A.ANDESMENDOZAMOUNTAIN WAVESSTORMShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1In this work, we analyze a set of 39 storms which took place between 2006 and 2011 over the South of Mendoza, Argentina. This is a semiarid region situated at mid-latitudes (roughly between 32S and 36S) at the east of the highest Andes tops which constitutes a natural laboratory where diverse sources of gravity waves usually take place. We consider a cultivated subregion near San Rafael district, where every summer a systematic generation of deep convection events is registered. We propose that the lift mechanism required to raise a parcel to its level of free convection is partially supplied by mountain waves (MWs). From Weather Research and Forecasting (WRF) mesoscale model simulations and radar network data, we calculate the evolution of convective available potential energy and convective inhibition indices during the development of each storm. Global Final Analysis is used to construct initial and boundary conditions. Convective inhibition indices are compared with the vertical kinetic energy capable of being supplied by the MWs, in order to provide a rough estimation of this possible triggering mechanism. Vertical velocity is chosen as an appropriate dynamical variable to evidence the presence of MWs in the vicinity of each detected first radar echo. After establishing a criterion based on a previous work to represent MWs, the 39 storms are split into two subsets: with and without the presence of MWs. 12 cases with considerable MWs amplitude are retained and considered. Radar data differences between the two samples are analyzed and the simulated MWs are characterized.Fil: Hierro, Rodrigo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería; ArgentinaFil: Pessano, H.. Universidad Tecnologica Nacional. Facultad Regional San Rafael; ArgentinaFil: Llamedo Soria, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería; ArgentinaFil: de la Torre, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería; ArgentinaFil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Odiard, A.. Dirección de Agricultura y Contingencias Climáticas; ArgentinaElsevier Science Inc2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85136Hierro, Rodrigo Federico; Pessano, H.; Llamedo Soria, Pablo Martin; de la Torre, Alejandro; Alexander, Pedro Manfredo; et al.; Orographic effects related to deep convection events over the Andes region; Elsevier Science Inc; Atmospheric Research; 120-121; 2-2013; 216-2250169-8095CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169809512002876info:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosres.2012.08.020info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:02Zoai:ri.conicet.gov.ar:11336/85136instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:02.708CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Orographic effects related to deep convection events over the Andes region |
title |
Orographic effects related to deep convection events over the Andes region |
spellingShingle |
Orographic effects related to deep convection events over the Andes region Hierro, Rodrigo Federico ANDES MENDOZA MOUNTAIN WAVES STORMS |
title_short |
Orographic effects related to deep convection events over the Andes region |
title_full |
Orographic effects related to deep convection events over the Andes region |
title_fullStr |
Orographic effects related to deep convection events over the Andes region |
title_full_unstemmed |
Orographic effects related to deep convection events over the Andes region |
title_sort |
Orographic effects related to deep convection events over the Andes region |
dc.creator.none.fl_str_mv |
Hierro, Rodrigo Federico Pessano, H. Llamedo Soria, Pablo Martin de la Torre, Alejandro Alexander, Pedro Manfredo Odiard, A. |
author |
Hierro, Rodrigo Federico |
author_facet |
Hierro, Rodrigo Federico Pessano, H. Llamedo Soria, Pablo Martin de la Torre, Alejandro Alexander, Pedro Manfredo Odiard, A. |
author_role |
author |
author2 |
Pessano, H. Llamedo Soria, Pablo Martin de la Torre, Alejandro Alexander, Pedro Manfredo Odiard, A. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
ANDES MENDOZA MOUNTAIN WAVES STORMS |
topic |
ANDES MENDOZA MOUNTAIN WAVES STORMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, we analyze a set of 39 storms which took place between 2006 and 2011 over the South of Mendoza, Argentina. This is a semiarid region situated at mid-latitudes (roughly between 32S and 36S) at the east of the highest Andes tops which constitutes a natural laboratory where diverse sources of gravity waves usually take place. We consider a cultivated subregion near San Rafael district, where every summer a systematic generation of deep convection events is registered. We propose that the lift mechanism required to raise a parcel to its level of free convection is partially supplied by mountain waves (MWs). From Weather Research and Forecasting (WRF) mesoscale model simulations and radar network data, we calculate the evolution of convective available potential energy and convective inhibition indices during the development of each storm. Global Final Analysis is used to construct initial and boundary conditions. Convective inhibition indices are compared with the vertical kinetic energy capable of being supplied by the MWs, in order to provide a rough estimation of this possible triggering mechanism. Vertical velocity is chosen as an appropriate dynamical variable to evidence the presence of MWs in the vicinity of each detected first radar echo. After establishing a criterion based on a previous work to represent MWs, the 39 storms are split into two subsets: with and without the presence of MWs. 12 cases with considerable MWs amplitude are retained and considered. Radar data differences between the two samples are analyzed and the simulated MWs are characterized. Fil: Hierro, Rodrigo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería; Argentina Fil: Pessano, H.. Universidad Tecnologica Nacional. Facultad Regional San Rafael; Argentina Fil: Llamedo Soria, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería; Argentina Fil: de la Torre, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería; Argentina Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Odiard, A.. Dirección de Agricultura y Contingencias Climáticas; Argentina |
description |
In this work, we analyze a set of 39 storms which took place between 2006 and 2011 over the South of Mendoza, Argentina. This is a semiarid region situated at mid-latitudes (roughly between 32S and 36S) at the east of the highest Andes tops which constitutes a natural laboratory where diverse sources of gravity waves usually take place. We consider a cultivated subregion near San Rafael district, where every summer a systematic generation of deep convection events is registered. We propose that the lift mechanism required to raise a parcel to its level of free convection is partially supplied by mountain waves (MWs). From Weather Research and Forecasting (WRF) mesoscale model simulations and radar network data, we calculate the evolution of convective available potential energy and convective inhibition indices during the development of each storm. Global Final Analysis is used to construct initial and boundary conditions. Convective inhibition indices are compared with the vertical kinetic energy capable of being supplied by the MWs, in order to provide a rough estimation of this possible triggering mechanism. Vertical velocity is chosen as an appropriate dynamical variable to evidence the presence of MWs in the vicinity of each detected first radar echo. After establishing a criterion based on a previous work to represent MWs, the 39 storms are split into two subsets: with and without the presence of MWs. 12 cases with considerable MWs amplitude are retained and considered. Radar data differences between the two samples are analyzed and the simulated MWs are characterized. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/85136 Hierro, Rodrigo Federico; Pessano, H.; Llamedo Soria, Pablo Martin; de la Torre, Alejandro; Alexander, Pedro Manfredo; et al.; Orographic effects related to deep convection events over the Andes region; Elsevier Science Inc; Atmospheric Research; 120-121; 2-2013; 216-225 0169-8095 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/85136 |
identifier_str_mv |
Hierro, Rodrigo Federico; Pessano, H.; Llamedo Soria, Pablo Martin; de la Torre, Alejandro; Alexander, Pedro Manfredo; et al.; Orographic effects related to deep convection events over the Andes region; Elsevier Science Inc; Atmospheric Research; 120-121; 2-2013; 216-225 0169-8095 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169809512002876 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosres.2012.08.020 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613799122829312 |
score |
13.070432 |