RF probe recovery time reduction with a novel active ringing suppression circuit

Autores
Peshkovsky, Alexey S.; Forguez, J.; Cerioni, Lucas Matias Ceferino; Pusiol, Daniel Jose
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A simple Q-damper device for active probe recovery time reduction is introduced along with a straightforward technique for the circuit's component value optimization. The device is inductively coupled to a probe through a coupling transformer positioned away from the main coil, which makes the design independent of the coil type being used. The Q-damper is a tuned circuit, which is resonant at the same frequency as the probe and can be actively interrupted. When the circuit is interrupted, it is detuned and, thereby, is uncoupled from the probe, which operates normally. Turning the device on leads to re-coupling of the circuits and causes splitting of the probe's resonance line, which can be observed through its drive port. A resistance of an appropriate value is introduced into the Q-damper circuit, resulting in smoothing of the resonance splitting into one broad line, representing the coupled system's low-Q state, in which the energy stored in the main coil is efficiently dissipated. The circuit's component values are optimized by monitoring the shape of this low-Q state. Probe recovery time reduction by, approximately, an order of magnitude has been obtained with this device. Application of the device during an NQR experiment led to an increase in the signal-to-noise ratio by a factor of 4.9.
Fil: Peshkovsky, Alexey S.. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Forguez, J.. No especifíca;
Fil: Cerioni, Lucas Matias Ceferino. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pusiol, Daniel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Materia
ACTIVE Q-SWITCHING
COIL RINGING SUPPRESSION
LOW FREQUENCY NMR
NUCLEAR QUADRUPOLE RESONANCE
PROBE RECOVERY TIME REDUCTION
Q-DAMPER
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/114916

id CONICETDig_f026b8650fba69f0f1713237ae18c282
oai_identifier_str oai:ri.conicet.gov.ar:11336/114916
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling RF probe recovery time reduction with a novel active ringing suppression circuitPeshkovsky, Alexey S.Forguez, J.Cerioni, Lucas Matias CeferinoPusiol, Daniel JoseACTIVE Q-SWITCHINGCOIL RINGING SUPPRESSIONLOW FREQUENCY NMRNUCLEAR QUADRUPOLE RESONANCEPROBE RECOVERY TIME REDUCTIONQ-DAMPERhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A simple Q-damper device for active probe recovery time reduction is introduced along with a straightforward technique for the circuit's component value optimization. The device is inductively coupled to a probe through a coupling transformer positioned away from the main coil, which makes the design independent of the coil type being used. The Q-damper is a tuned circuit, which is resonant at the same frequency as the probe and can be actively interrupted. When the circuit is interrupted, it is detuned and, thereby, is uncoupled from the probe, which operates normally. Turning the device on leads to re-coupling of the circuits and causes splitting of the probe's resonance line, which can be observed through its drive port. A resistance of an appropriate value is introduced into the Q-damper circuit, resulting in smoothing of the resonance splitting into one broad line, representing the coupled system's low-Q state, in which the energy stored in the main coil is efficiently dissipated. The circuit's component values are optimized by monitoring the shape of this low-Q state. Probe recovery time reduction by, approximately, an order of magnitude has been obtained with this device. Application of the device during an NQR experiment led to an increase in the signal-to-noise ratio by a factor of 4.9.Fil: Peshkovsky, Alexey S.. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Forguez, J.. No especifíca;Fil: Cerioni, Lucas Matias Ceferino. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pusiol, Daniel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaAcademic Press Inc Elsevier Science2005-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/114916Peshkovsky, Alexey S.; Forguez, J.; Cerioni, Lucas Matias Ceferino; Pusiol, Daniel Jose; RF probe recovery time reduction with a novel active ringing suppression circuit; Academic Press Inc Elsevier Science; Journal Of Magnetic Resonance; 177; 1; 11-2005; 67-731090-7807CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1090780705002284info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmr.2005.07.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:29Zoai:ri.conicet.gov.ar:11336/114916instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:30.113CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv RF probe recovery time reduction with a novel active ringing suppression circuit
title RF probe recovery time reduction with a novel active ringing suppression circuit
spellingShingle RF probe recovery time reduction with a novel active ringing suppression circuit
Peshkovsky, Alexey S.
ACTIVE Q-SWITCHING
COIL RINGING SUPPRESSION
LOW FREQUENCY NMR
NUCLEAR QUADRUPOLE RESONANCE
PROBE RECOVERY TIME REDUCTION
Q-DAMPER
title_short RF probe recovery time reduction with a novel active ringing suppression circuit
title_full RF probe recovery time reduction with a novel active ringing suppression circuit
title_fullStr RF probe recovery time reduction with a novel active ringing suppression circuit
title_full_unstemmed RF probe recovery time reduction with a novel active ringing suppression circuit
title_sort RF probe recovery time reduction with a novel active ringing suppression circuit
dc.creator.none.fl_str_mv Peshkovsky, Alexey S.
Forguez, J.
Cerioni, Lucas Matias Ceferino
Pusiol, Daniel Jose
author Peshkovsky, Alexey S.
author_facet Peshkovsky, Alexey S.
Forguez, J.
Cerioni, Lucas Matias Ceferino
Pusiol, Daniel Jose
author_role author
author2 Forguez, J.
Cerioni, Lucas Matias Ceferino
Pusiol, Daniel Jose
author2_role author
author
author
dc.subject.none.fl_str_mv ACTIVE Q-SWITCHING
COIL RINGING SUPPRESSION
LOW FREQUENCY NMR
NUCLEAR QUADRUPOLE RESONANCE
PROBE RECOVERY TIME REDUCTION
Q-DAMPER
topic ACTIVE Q-SWITCHING
COIL RINGING SUPPRESSION
LOW FREQUENCY NMR
NUCLEAR QUADRUPOLE RESONANCE
PROBE RECOVERY TIME REDUCTION
Q-DAMPER
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A simple Q-damper device for active probe recovery time reduction is introduced along with a straightforward technique for the circuit's component value optimization. The device is inductively coupled to a probe through a coupling transformer positioned away from the main coil, which makes the design independent of the coil type being used. The Q-damper is a tuned circuit, which is resonant at the same frequency as the probe and can be actively interrupted. When the circuit is interrupted, it is detuned and, thereby, is uncoupled from the probe, which operates normally. Turning the device on leads to re-coupling of the circuits and causes splitting of the probe's resonance line, which can be observed through its drive port. A resistance of an appropriate value is introduced into the Q-damper circuit, resulting in smoothing of the resonance splitting into one broad line, representing the coupled system's low-Q state, in which the energy stored in the main coil is efficiently dissipated. The circuit's component values are optimized by monitoring the shape of this low-Q state. Probe recovery time reduction by, approximately, an order of magnitude has been obtained with this device. Application of the device during an NQR experiment led to an increase in the signal-to-noise ratio by a factor of 4.9.
Fil: Peshkovsky, Alexey S.. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Forguez, J.. No especifíca;
Fil: Cerioni, Lucas Matias Ceferino. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pusiol, Daniel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
description A simple Q-damper device for active probe recovery time reduction is introduced along with a straightforward technique for the circuit's component value optimization. The device is inductively coupled to a probe through a coupling transformer positioned away from the main coil, which makes the design independent of the coil type being used. The Q-damper is a tuned circuit, which is resonant at the same frequency as the probe and can be actively interrupted. When the circuit is interrupted, it is detuned and, thereby, is uncoupled from the probe, which operates normally. Turning the device on leads to re-coupling of the circuits and causes splitting of the probe's resonance line, which can be observed through its drive port. A resistance of an appropriate value is introduced into the Q-damper circuit, resulting in smoothing of the resonance splitting into one broad line, representing the coupled system's low-Q state, in which the energy stored in the main coil is efficiently dissipated. The circuit's component values are optimized by monitoring the shape of this low-Q state. Probe recovery time reduction by, approximately, an order of magnitude has been obtained with this device. Application of the device during an NQR experiment led to an increase in the signal-to-noise ratio by a factor of 4.9.
publishDate 2005
dc.date.none.fl_str_mv 2005-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/114916
Peshkovsky, Alexey S.; Forguez, J.; Cerioni, Lucas Matias Ceferino; Pusiol, Daniel Jose; RF probe recovery time reduction with a novel active ringing suppression circuit; Academic Press Inc Elsevier Science; Journal Of Magnetic Resonance; 177; 1; 11-2005; 67-73
1090-7807
CONICET Digital
CONICET
url http://hdl.handle.net/11336/114916
identifier_str_mv Peshkovsky, Alexey S.; Forguez, J.; Cerioni, Lucas Matias Ceferino; Pusiol, Daniel Jose; RF probe recovery time reduction with a novel active ringing suppression circuit; Academic Press Inc Elsevier Science; Journal Of Magnetic Resonance; 177; 1; 11-2005; 67-73
1090-7807
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1090780705002284
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmr.2005.07.004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614166643474432
score 13.070432