Extending the IoT-Stream Model with a Taxonomy for Sensors in Sustainable Smart Cities

Autores
Santos, Rodrigo Martin; Eggly, Gabriel Martin; Gutiérrez, Julián; Chesñevar, Carlos Iván
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Sustainable cities aim to have a lower environmental impact by reducing their carbon footprints as much as possible. The smart city paradigm based on the Internet of Things (IoT) is the natural approach to achieving this goal. Nevertheless, the proliferation of sensors and IoT technologies, along with the need for annotating real-time data, has promoted the need for light weight ontology-based models for IoT environments, such as IoT-Stream. The IoT-Stream model takes advantage of common knowledge sharing of the semantics while keeping queries and inferences simple. However, sensors in the IoT-Stream model are conceptualized as single entities, exluding further analysis concerning their features (energy consumption, cost, etc.) or application areas. In this article, we present a taxonomy of sensors that expands the original IoT-Stream model by facilitating the mapping of sensors/actuators and services in the context of smart cities in such a way that different applications can share information in a transparent way, avoiding unnecessary duplication of sensors and network infrastructure.
Fil: Santos, Rodrigo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Eggly, Gabriel Martin. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Ingeniería de Software y Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Gutiérrez, Julián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Chesñevar, Carlos Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Materia
INTERNET OF THINGS
SMART CITIES
SUSTAINABLE CITIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/213905

id CONICETDig_efe574d2d5c080d25baaa719e808ca8b
oai_identifier_str oai:ri.conicet.gov.ar:11336/213905
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Extending the IoT-Stream Model with a Taxonomy for Sensors in Sustainable Smart CitiesSantos, Rodrigo MartinEggly, Gabriel MartinGutiérrez, JuliánChesñevar, Carlos IvánINTERNET OF THINGSSMART CITIESSUSTAINABLE CITIEShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Sustainable cities aim to have a lower environmental impact by reducing their carbon footprints as much as possible. The smart city paradigm based on the Internet of Things (IoT) is the natural approach to achieving this goal. Nevertheless, the proliferation of sensors and IoT technologies, along with the need for annotating real-time data, has promoted the need for light weight ontology-based models for IoT environments, such as IoT-Stream. The IoT-Stream model takes advantage of common knowledge sharing of the semantics while keeping queries and inferences simple. However, sensors in the IoT-Stream model are conceptualized as single entities, exluding further analysis concerning their features (energy consumption, cost, etc.) or application areas. In this article, we present a taxonomy of sensors that expands the original IoT-Stream model by facilitating the mapping of sensors/actuators and services in the context of smart cities in such a way that different applications can share information in a transparent way, avoiding unnecessary duplication of sensors and network infrastructure.Fil: Santos, Rodrigo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Eggly, Gabriel Martin. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Ingeniería de Software y Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Gutiérrez, Julián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Chesñevar, Carlos Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaMDPI2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213905Santos, Rodrigo Martin; Eggly, Gabriel Martin; Gutiérrez, Julián; Chesñevar, Carlos Iván; Extending the IoT-Stream Model with a Taxonomy for Sensors in Sustainable Smart Cities; MDPI; Sustainability; 15; 8; 4-2023; 1-212071-1050CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2071-1050/15/8/6594info:eu-repo/semantics/altIdentifier/doi/10.3390/su15086594info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:42Zoai:ri.conicet.gov.ar:11336/213905instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:42.367CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Extending the IoT-Stream Model with a Taxonomy for Sensors in Sustainable Smart Cities
title Extending the IoT-Stream Model with a Taxonomy for Sensors in Sustainable Smart Cities
spellingShingle Extending the IoT-Stream Model with a Taxonomy for Sensors in Sustainable Smart Cities
Santos, Rodrigo Martin
INTERNET OF THINGS
SMART CITIES
SUSTAINABLE CITIES
title_short Extending the IoT-Stream Model with a Taxonomy for Sensors in Sustainable Smart Cities
title_full Extending the IoT-Stream Model with a Taxonomy for Sensors in Sustainable Smart Cities
title_fullStr Extending the IoT-Stream Model with a Taxonomy for Sensors in Sustainable Smart Cities
title_full_unstemmed Extending the IoT-Stream Model with a Taxonomy for Sensors in Sustainable Smart Cities
title_sort Extending the IoT-Stream Model with a Taxonomy for Sensors in Sustainable Smart Cities
dc.creator.none.fl_str_mv Santos, Rodrigo Martin
Eggly, Gabriel Martin
Gutiérrez, Julián
Chesñevar, Carlos Iván
author Santos, Rodrigo Martin
author_facet Santos, Rodrigo Martin
Eggly, Gabriel Martin
Gutiérrez, Julián
Chesñevar, Carlos Iván
author_role author
author2 Eggly, Gabriel Martin
Gutiérrez, Julián
Chesñevar, Carlos Iván
author2_role author
author
author
dc.subject.none.fl_str_mv INTERNET OF THINGS
SMART CITIES
SUSTAINABLE CITIES
topic INTERNET OF THINGS
SMART CITIES
SUSTAINABLE CITIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Sustainable cities aim to have a lower environmental impact by reducing their carbon footprints as much as possible. The smart city paradigm based on the Internet of Things (IoT) is the natural approach to achieving this goal. Nevertheless, the proliferation of sensors and IoT technologies, along with the need for annotating real-time data, has promoted the need for light weight ontology-based models for IoT environments, such as IoT-Stream. The IoT-Stream model takes advantage of common knowledge sharing of the semantics while keeping queries and inferences simple. However, sensors in the IoT-Stream model are conceptualized as single entities, exluding further analysis concerning their features (energy consumption, cost, etc.) or application areas. In this article, we present a taxonomy of sensors that expands the original IoT-Stream model by facilitating the mapping of sensors/actuators and services in the context of smart cities in such a way that different applications can share information in a transparent way, avoiding unnecessary duplication of sensors and network infrastructure.
Fil: Santos, Rodrigo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Eggly, Gabriel Martin. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Ingeniería de Software y Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Gutiérrez, Julián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Chesñevar, Carlos Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
description Sustainable cities aim to have a lower environmental impact by reducing their carbon footprints as much as possible. The smart city paradigm based on the Internet of Things (IoT) is the natural approach to achieving this goal. Nevertheless, the proliferation of sensors and IoT technologies, along with the need for annotating real-time data, has promoted the need for light weight ontology-based models for IoT environments, such as IoT-Stream. The IoT-Stream model takes advantage of common knowledge sharing of the semantics while keeping queries and inferences simple. However, sensors in the IoT-Stream model are conceptualized as single entities, exluding further analysis concerning their features (energy consumption, cost, etc.) or application areas. In this article, we present a taxonomy of sensors that expands the original IoT-Stream model by facilitating the mapping of sensors/actuators and services in the context of smart cities in such a way that different applications can share information in a transparent way, avoiding unnecessary duplication of sensors and network infrastructure.
publishDate 2023
dc.date.none.fl_str_mv 2023-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/213905
Santos, Rodrigo Martin; Eggly, Gabriel Martin; Gutiérrez, Julián; Chesñevar, Carlos Iván; Extending the IoT-Stream Model with a Taxonomy for Sensors in Sustainable Smart Cities; MDPI; Sustainability; 15; 8; 4-2023; 1-21
2071-1050
CONICET Digital
CONICET
url http://hdl.handle.net/11336/213905
identifier_str_mv Santos, Rodrigo Martin; Eggly, Gabriel Martin; Gutiérrez, Julián; Chesñevar, Carlos Iván; Extending the IoT-Stream Model with a Taxonomy for Sensors in Sustainable Smart Cities; MDPI; Sustainability; 15; 8; 4-2023; 1-21
2071-1050
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2071-1050/15/8/6594
info:eu-repo/semantics/altIdentifier/doi/10.3390/su15086594
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269301470396416
score 13.13397