Force free Möbius motions of the circle

Autores
Emmanuele, Daniela Beatriz; Salvai, Marcos Luis
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let M be the Lie group of Möbius transformations of the circle. Suppose that the circle has initially a homogeneous distribution of mass and that the particles are allowed to move only in such a way that two configurations differ in an element of M. We describe all force free Möbius motions, that is, those curves in M which are critical points of the kinetic energy. The main tool is a Riemannian metric on M which turns out to be not complete (in particular not invariant, as happens with non-rigid motions) given by the kinetic energy.
Fil: Emmanuele, Daniela Beatriz. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
FORCE FREE MOTION
NON-RIGID MOTION
MOEBIUS TRANSFORMATION
GEODESIC
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/198108

id CONICETDig_efafaa55d23d530acb56ab76404f2a7e
oai_identifier_str oai:ri.conicet.gov.ar:11336/198108
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Force free Möbius motions of the circleEmmanuele, Daniela BeatrizSalvai, Marcos LuisFORCE FREE MOTIONNON-RIGID MOTIONMOEBIUS TRANSFORMATIONGEODESIChttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let M be the Lie group of Möbius transformations of the circle. Suppose that the circle has initially a homogeneous distribution of mass and that the particles are allowed to move only in such a way that two configurations differ in an element of M. We describe all force free Möbius motions, that is, those curves in M which are critical points of the kinetic energy. The main tool is a Riemannian metric on M which turns out to be not complete (in particular not invariant, as happens with non-rigid motions) given by the kinetic energy.Fil: Emmanuele, Daniela Beatriz. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaBulgarian Academy of Sciences, Institute of Mechanics2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/198108Emmanuele, Daniela Beatriz; Salvai, Marcos Luis; Force free Möbius motions of the circle; Bulgarian Academy of Sciences, Institute of Mechanics; Journal of Geometry and Symmetry in Physics; 27; 9; 9-2012; 59-651312-51921314-5673CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.bio21.bas.bg/jgsp/jgsp_files/vol27/Emmanuele.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.7546/jgsp-27-2012-59-65info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:25:02Zoai:ri.conicet.gov.ar:11336/198108instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:25:03.264CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Force free Möbius motions of the circle
title Force free Möbius motions of the circle
spellingShingle Force free Möbius motions of the circle
Emmanuele, Daniela Beatriz
FORCE FREE MOTION
NON-RIGID MOTION
MOEBIUS TRANSFORMATION
GEODESIC
title_short Force free Möbius motions of the circle
title_full Force free Möbius motions of the circle
title_fullStr Force free Möbius motions of the circle
title_full_unstemmed Force free Möbius motions of the circle
title_sort Force free Möbius motions of the circle
dc.creator.none.fl_str_mv Emmanuele, Daniela Beatriz
Salvai, Marcos Luis
author Emmanuele, Daniela Beatriz
author_facet Emmanuele, Daniela Beatriz
Salvai, Marcos Luis
author_role author
author2 Salvai, Marcos Luis
author2_role author
dc.subject.none.fl_str_mv FORCE FREE MOTION
NON-RIGID MOTION
MOEBIUS TRANSFORMATION
GEODESIC
topic FORCE FREE MOTION
NON-RIGID MOTION
MOEBIUS TRANSFORMATION
GEODESIC
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let M be the Lie group of Möbius transformations of the circle. Suppose that the circle has initially a homogeneous distribution of mass and that the particles are allowed to move only in such a way that two configurations differ in an element of M. We describe all force free Möbius motions, that is, those curves in M which are critical points of the kinetic energy. The main tool is a Riemannian metric on M which turns out to be not complete (in particular not invariant, as happens with non-rigid motions) given by the kinetic energy.
Fil: Emmanuele, Daniela Beatriz. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description Let M be the Lie group of Möbius transformations of the circle. Suppose that the circle has initially a homogeneous distribution of mass and that the particles are allowed to move only in such a way that two configurations differ in an element of M. We describe all force free Möbius motions, that is, those curves in M which are critical points of the kinetic energy. The main tool is a Riemannian metric on M which turns out to be not complete (in particular not invariant, as happens with non-rigid motions) given by the kinetic energy.
publishDate 2012
dc.date.none.fl_str_mv 2012-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/198108
Emmanuele, Daniela Beatriz; Salvai, Marcos Luis; Force free Möbius motions of the circle; Bulgarian Academy of Sciences, Institute of Mechanics; Journal of Geometry and Symmetry in Physics; 27; 9; 9-2012; 59-65
1312-5192
1314-5673
CONICET Digital
CONICET
url http://hdl.handle.net/11336/198108
identifier_str_mv Emmanuele, Daniela Beatriz; Salvai, Marcos Luis; Force free Möbius motions of the circle; Bulgarian Academy of Sciences, Institute of Mechanics; Journal of Geometry and Symmetry in Physics; 27; 9; 9-2012; 59-65
1312-5192
1314-5673
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.bio21.bas.bg/jgsp/jgsp_files/vol27/Emmanuele.pdf
info:eu-repo/semantics/altIdentifier/doi/10.7546/jgsp-27-2012-59-65
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Bulgarian Academy of Sciences, Institute of Mechanics
publisher.none.fl_str_mv Bulgarian Academy of Sciences, Institute of Mechanics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781795422437376
score 12.982451